Loop diuretic therapy in the critically ill: a survey

Sarah L Jones, Johan Mårtensson, Neil J Glassford, Glenn M Eastwood and Rinaldo Bellomo

ABSTRACT

Objectives: To describe the self-reported practice of loop diuretic therapy (LDT) administration by intensivists in Australia and New Zealand and to ascertain the anticipated clinical and physiological effects of LDT for several common clinical indications.

Design: Structured online questionnaire distributed to intensivists via the Australian and New Zealand Intensive Care Society Clinical Trials Group email contact list. Descriptive statistics were used to analyse the results.

Participants: Intensivists in Australia and New Zealand.

Results: A total of 146 intensivists responded to the survey with most (99 [67.8%]) being Fellows of the College of Intensive Care Medicine or the Joint Faculty of Intensive Care Medicine. Overall, 88 (60.2%) had worked in ICUs for 10 years or more. A positive fluid balance, acute pulmonary oedema (APO) and acute lung injury (ALI) were considered key indications for LDT (> 80.0% positive response), in contrast to an elevated central venous pressure (CVP) (20.3%) and acute kidney injury (AKI) (3.8%), which were not. LDT by bolus therapy was preferred (by 60.0%–89.4%, according to indication) over continuous infusion (3.6%–11.1%, according to indication). The dominant initial LDT dose was furosemide 40 mg as an intravenous (IV) bolus. There was a lack of consensus regarding what would be an adequate response, and for many of the clinical indications, no target was specified.

Conclusions: Australian and New Zealand intensivists typically give frusemide as a 40 mg IV bolus for a positive fluid balance, ALI and APO, but not for an elevated CVP or AKI. However, such therapy is given without explicit definitions of an adequate response under these different clinical circumstances.
Results

Cohort and demographics
We received a total of 146 responses. The greatest number, 41 (28.1%), was from New South Wales.
Overall, 99 respondents (67.8%) were Fellows of the College of Intensive Care Medicine or the Joint Faculty of Intensive Care Medicine, and 20 (13.7%) were advanced trainees. The remaining 27 respondents (18.5%) were Fellows of the College of Anaesthetists, the College of Emergency Medicine or the College of Physicians. Most respondents were experienced ICU specialists with 88 (60.2%) having worked in ICUs for 10 years or more, and only 23 (15.8%) for fewer than 5 years.

Clinical indications, preferred administration method and preferred dose of LDT

Figure 1 shows the six clinical indications for LDT investigated in the survey, and the percentage of respondents who would give LDT for these indications. A positive fluid balance, APO and ALI were overwhelmingly considered to be key indications for giving LDT, in contrast to an elevated CVP and AKI, which only a small minority considered to warrant LDT.

Table 1 shows the preferred method for giving LDT for each of the clinical indications and shows the dominance of IV bolus therapy over continuous IV infusion. Table 2 shows the preferred LDT dose for each of the clinical indications and shows the dominance of the 40 mg IV bolus and the preferred starting dose of 10 mg/h for a continuous infusion. Table 3 shows the three most commonly expected clinical responses after LDT. It shows the widespread lack of precise and explicit definitions of what an “adequate response” would be in different circumstances, with the partial exception of the urinary output.

Discussion

Key findings
In our survey, we found that Australian and New Zealand intensivists overwhelmingly reported using LDT for a positive fluid balance, APO and ALI but not for an elevated CVP or AKI. An IV bolus (typically 40 mg) was clearly preferred over an infusion. However, with the partial exception of urinary output, the expected adequate clinical responses to such treatment remained undefined.

Relationship to previous studies
Some of our findings are in accordance with the results of a previous multinational study investigating LDT in the man-
agement of AKI, which generated 331 responses from 16 countries. In that study, clinicians also reported using diuretics as IV boluses in preference to infusion. This is perhaps surprising, given that lower doses of furosemide are generally required to achieve the same clinical effect when given as an infusion. As in our study, diuretics were “frequently” or “almost always” given for APO, but “rarely” given for AKI. Over 75% of respondents targeted a urine output of ≥ 0.5 mL/kg/h or ≥ 1 mL/kg/h when giving diuretics for AKI. Nearly 18% of respondents did not specifically target a given fluid balance when using diuretics for AKI, although 35.9% targeted a negative daily balance of 0.5–1 L. No information was obtained on expected effects or definitions of an adequate response.

Study implications
Our study implies that in general, there is broad consensus among Australian and New Zealand intensivists on when to give LDT, the use of bolus therapy and the preferred LDT dose, but the expected physiological and clinical responses are poorly defined. These observations imply that, in many patients, LDT given in the ICU may be given without clear physiological and/or clinical targets.

Strengths and limitations
Our study has strengths and limitations. The method selected to sample respondents was efficient and expedient, and the survey was subject to thorough assessment by experienced intensivists before distribution.

With regards to limitations, to optimise the number of respondents, questions were kept deliberately simple. To have focussed on more specific details for each clinical indication would have made it lengthier and reduced the number of respondents willing to participate. It is appreciated that when prescribing LDT for a critically ill patient, several factors are considered, including the patient’s renal function, whether they usually take a diuretic, and the response seen when a dose has previously been given. Because of the way the survey was distributed, we could not impute an appropriate denominator to calculate a response rate.

Conclusions
Australian and New Zealand intensivists report giving LDT for a positive fluid balance, APO and ALI but not for an elevated CVP or for AKI. LDT is most commonly given as an IV bolus, typically at a dose of 40 mg. However, the clarity of reported practice is lost when defining the expected physiological and clinical effects. These observations suggest the need to conduct prospective observational studies to define the typical response to LDT in critically ill patients. Future work should also enquire about the concomitant administration of albumin (“push–pull” therapy) and the frequency of electrolyte replacement, notably potassium and magnesium, when giving LDT.

Competing interests
None declared.

References
5 Payen D, de Pont AC, Sakr Y, et al; Sepsis Occurrence in Acutely Ill Patients (SOAP) Investigators. A positive fluid balance is associated

Table 3. The three most commonly expected clinical responses to loop diuretic therapy, by clinical indication

<table>
<thead>
<tr>
<th>Indication (%)</th>
<th>Most common</th>
<th>Expected adequate clinical response (%)</th>
<th>3rd most common</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ve fluid bal. (130)</td>
<td>–ve fluid bal.; 1 L in 24 h (34.6%)</td>
<td>–ve fluid bal.; no set target (27.7%)</td>
<td>–ve fluid bal.; 1.5 L in 24 h (21.5%)</td>
</tr>
<tr>
<td>Oliguria (61)</td>
<td>UO > 1 mL/kg/h (37.7%)*</td>
<td>UO > 0.5 mL/kg/h (32.8%)*</td>
<td>Improved UO; no set target (11.5%)</td>
</tr>
<tr>
<td>ALI (108)</td>
<td>↓ PaO₂/FiO₂; no set target (91.7%)</td>
<td>PaO₂/FiO₂ > 200 (5.6%)</td>
<td>PaO₂/FiO₂ > 300 (1.9%)</td>
</tr>
<tr>
<td>↑ CVP (28)</td>
<td>↓ CVP; no set target (75%)</td>
<td>↓ CVP by 2 mmHg (17.9%)</td>
<td>↓ CVP by 4 mmHg (7.1%)</td>
</tr>
<tr>
<td>APO (122)</td>
<td>↓ FiO₂ (58.5%) and ↓ RR (66.7%); no set targets</td>
<td>↓ FiO₂ by 20% (22%) and ↓ RR by 8 bpm (16.7%)</td>
<td>↓ FiO₂ by 10% or 30% (8.5%) and ↓ RR by 4 bpm (10.8%)</td>
</tr>
<tr>
<td>AKI (5)</td>
<td>↓ serum creatinine, no set target (80%)</td>
<td>↓ serum creatinine by 10% (20%)</td>
<td>–</td>
</tr>
</tbody>
</table>

* Actual urine output (not increase over baseline).

Author details
Sarah L Jones, ICU Research Fellow
Johan Mårtensson, Postdoctoral ICU Research Fellow
Neil J Glassford, Clinical Research Fellow, and PhD Candidate
Glenn M Eastwood, ICU Research Manager
Rinaldo Bellomo, Director of Research
1 Department of Intensive Care, Austin Hospital, Melbourne, VIC, Australia.
2 Section of Anaesthesia and Intensive Care Medicine, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
3 Australian and New Zealand Intensive Care Research Centre, School of Preventive Medicine and Public Health, Monash University, Melbourne, VIC, Australia.

Correspondence: rinaldo.bellomo@austin.org.au
Diuretic use in critically ill patients, along with fluid bolus therapy remains a topic of controversy. Many of you have recently completed a survey designed to further understand fluid bolus therapy practice in the Intensive Care Unit (ICU). To understand another key intervention for fluid balance in critically ill patients, a second survey has been designed in an attempt to further clarify frusemide use in the ICU, particularly focussing on its expected clinical effects.

This short voluntary practice survey should take at most 5 minutes to complete.

The survey first asks about your location and duration of your intensive care practice. It then asks you to specify the clinical circumstances in which you would give frusemide, the dose and method of frusemide that you would give, followed by the anticipated clinical response.

This project has been reviewed by the Austin Health Human Research Ethics Committee (Project No. LNR/14/Austin/291). Your participation is voluntary and your responses will remain anonymous. All responses will be stored electronically and accessible only by the investigators. Only aggregated findings will be published or presented in peer-reviewed critical care journals.

Questionnaire version 3 (19/06/2014)

Respondent Details

* 1. Please indicate your State/Territory of Practice
 - North Island, New Zealand
 - South Island, New Zealand
 - Queensland, Australia
 - Western Australia
 - New South Wales, Australia
 - Tasmania, Australia
 - Victoria, Australia
 - South Australia
 - Australian Capital Territory
 - Northern Territory, Australia
2. Which of the following Fellowships do you hold at present?
 - FCICM/JFICM
 - FANZCA
 - FACEM
 - FRACP
 - None - trainee

3. How long have you worked in Intensive Care?
 - Less than 5 years
 - 5-10 years
 - 10-15 years
 - 15-20 years
 - More than 20 years

Frusemide and Positive Fluid Balance

4. Would you give frusemide to a critically ill patient with a markedly positive cumulative fluid balance?
 - Yes
 - No

5. What would be your preferred method for giving frusemide in this instance?
 - IV bolus
 - IV infusion
 - No preference

6. Please specify what dose of frusemide you would typically give for this indication

<table>
<thead>
<tr>
<th>IV bolus</th>
<th>IV infusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dose</td>
<td></td>
</tr>
</tbody>
</table>
7. What would constitute an adequate clinical response when administering frusemide for a markedly positive cumulative fluid balance?

- Negative fluid balance of 500mls in 24 hours
- Negative fluid balance of 1 Litres in 24 hours
- Negative fluid balance of 1.5 Litres in 24 hours
- Negative fluid balance of 2 Litres or more in 24 hours
- A negative fluid balance but no specific target

Frusemide and Oliguria

8. Would you give frusemide to an oliguric critically ill patient (urine output <0.5mls/kg/hr for 6 hours or more)?

- Yes
- No

9. What would be your preferred method for giving frusemide in this instance?

- IV bolus
- IV infusion
- No preference

10. Please specify what dose of frusemide you would typically give for this indication

<table>
<thead>
<tr>
<th>Dose</th>
<th>IV bolus</th>
<th>IV infusion</th>
</tr>
</thead>
</table>

11. What would constitute an adequate clinical response when administering frusemide for oliguria?

- Urine output > 0.5mls/kg/hour
- Urine output >1ml/kg/hour
- Urine output >1.5mls/kg/hour
- Urine output >2mls/kg/hour
- An improvement in urine output but no specific target

Frusemide in Acute Lung Injury
12. Would you give frusemide to a critically ill patient with Acute Lung Injury?
 - Yes
 - No

13. What would be your preferred method for giving furosemide in this instance?
 - IV bolus
 - IV infusion
 - No preference

14. Please specify what dose of frusemide you would typically give for this indication

15. What would constitute an adequate clinical response when administering frusemide in Acute Lung Injury?
 - PaO2/FiO2 ratio > 100
 - PaO2/FiO2 ratio > 200
 - PaO2/FiO2 ratio > 300
 - PaO2/FiO2 ratio > 400
 - An improvement in the PaO2/FiO2 ratio but no specific target

Furosemide and Elevated CVP

16. Would you give furosemide to a critically ill patient with what you consider to be an elevated central venous pressure (CVP)?
 - Yes
 - No

17. What would be your preferred method for giving frusemide in this instance?
 - IV bolus
 - IV infusion
 - No preference
18. Please specify what dose of furosemide you would typically give for this indication

<table>
<thead>
<tr>
<th></th>
<th>IV bolus</th>
<th>IV infusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dose</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* 19. What would constitute an adequate clinical response when administering furosemide for what you consider to be an elevated CVP?
 - A reduction in CVP by 2mmHg
 - A reduction in CVP by 4mmHg
 - A reduction in CVP by 6mmHg
 - A reduction in CVP but no specific target

Frusemide in Acute Pulmonary Oedema

* 20. Would you give frusemide to a critically ill patient with acute pulmonary oedema?
 - Yes
 - No

* 21. What would be your preferred method for giving frusemide in this instance?
 - IV bolus
 - IV infusion
 - No preference

22. Please specify what dose of frusemide you would typically give for this indication

<table>
<thead>
<tr>
<th></th>
<th>IV bolus</th>
<th>IV infusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dose</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

23. What would constitute an adequate clinical response when administering frusemide for pulmonary oedema?

<table>
<thead>
<tr>
<th></th>
<th>FiO2</th>
<th>Respiratory Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduction in</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Frusemide in Acute Kidney Injury
24. Would you give furosemide to a critically ill patient with Acute Kidney Injury based on serum creatinine alone?
 - Yes
 - No

25. What would be your serum creatinine threshold for frusemide administration in Acute Kidney Injury?
 - > 1.5 x baseline serum creatinine (KDIGO AKI stage 1)
 - > 2 x baseline serum creatinine (KDIGO AKI stage 2)
 - > 3 x baseline serum creatinine (KDIGO AKI stage 3)
 - No specific serum creatinine threshold

26. What would be your preferred method for giving frusemide in this instance?
 - IV bolus
 - IV infusion
 - No preference

27. Please specify what dose of frusemide you would typically give for this indication

<table>
<thead>
<tr>
<th>IV bolus</th>
<th>IV infusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dose</td>
<td></td>
</tr>
</tbody>
</table>

28. What would constitute an adequate clinical response when administering frusemide for Acute Kidney Injury?
 - Fall in serum creatinine by 10%
 - Fall in serum creatinine by 20%
 - Fall in serum creatinine by 30%
 - Fall in serum creatinine by 40%
 - Fall in serum creatinine by 50% or more
 - A reduction in serum creatinine, but no specific target

Survey Finish

Thank you for taking the time to complete this survey. It is much appreciated.

Please e-mail any comments you have regarding the survey to sarah.jones@austin.org.au