Intravenous fluids are frequently used in intensive care units (ICUs) to resuscitate patients with trauma. Although the appropriate use of fluids in ICUs may have benefits, there is increasing awareness of the potential risks in trauma patients. In particular, in patients with traumatic brain injury (TBI), resuscitation with commercially available 4% albumin solution has been associated with increased mortality. It was proposed that an increase in intracranial pressure (ICP) following infusion of the hypotonic commercial 4% albumin solution used in the Saline or Albumin for Fluid Resuscitation in Patients with Traumatic Brain Injury (SAFE-TBI) study explained such increased mortality in patients with TBI. An increase in ICP with albumin administration was subsequently confirmed in a follow-up of the SAFE-TBI study, involving patients with ICP monitoring. However, it remains unclear whether the increase in ICP seen in the SAFE-TBI study was due to the albumin molecule itself or to the hypotonicity of the solution containing 4% albumin. Moreover, although albumin may be used as a volume expander in response to oliguria, a relatively common complication of trauma, and of trauma with TBI, the effects of the commercially available 4% albumin solutions on renal blood flow and function have never been studied.

We performed an experimental study in conscious, chronically instrumented sheep to test the hypothesis that infusion of commercial 4% albumin solution would increase ICP, even in healthy animals, and that a modified albumin solution with a tonicity similar to that of normal saline, or of trauma with TBI, the effects of the commercially available 4% albumin solutions on renal blood flow and function have never been studied.

We performed an experimental study in conscious, chronically instrumented sheep to test the hypothesis that infusion of commercial 4% albumin solution would increase ICP, even in healthy animals, and that a modified albumin solution with a tonicity similar to that of normal saline, or the infusion of saline itself, would prevent such an increase in ICP. Because the effects of tonicity of an albumin solution and of albumin itself on systemic haemodynamics, renal blood flow and renal function are unclear, we also studied the effects of infusion of the three experimental fluids on these variables.

Methods
Animal preparation
Experiments were conducted on six healthy adult Merino ewes (mean bodyweight, 43.1 kg [SD, 3.7 kg]) housed in individual metabolic cages, fed 800 g of oaten chaff per day and given water ad libitum.

Experimental procedures were approved by the Animal Ethics Committee of the Florey Institute of Neuroscience under guidelines laid down by the National Health and Medical Research Council of Australia.

Sheep underwent two sterile surgical procedures under general anaesthesia. In the first, a carotid arterial loop was created to facilitate arterial cannulation and a 20 mm transit-
time flow probe (Transonics Systems) was implanted on the pulmonary artery to measure cardiac output (CO). After 2 weeks, a 4 mm transit-time flow probe was implanted on the left renal artery. The sheep were then placed in a stereotactic apparatus and, in an aseptic operation, stainless steel guide tubes (17G) were implanted, with the tips about 2 mm above the lateral ventricles. Pre-surgical and postsurgical antibiotics and analgesia were given as previously described elsewhere.

A 14-day recovery period from the second surgery was allowed before experimentation started. The day before experimentation, a cannula was inserted into a carotid artery to monitor blood pressure and sample blood, and two cannulae were inserted into a jugular vein for infusion of albumin solutions or saline and measurement of central venous pressure (CVP). To measure ICP, a 20G probe that projected 5 mm below the tip of the ventricular guide tube was inserted. The probe, connected to a Tygon cannula (1 mm internal diameter; 1.5 mm external diameter) filled with artificial cerebrospinal fluid (CSF), was held in place with a luer-lock. It was confirmed that the needle tip was located in the lateral cerebral ventricle by raising and lowering the catheter and checking that artificial CSF flowed into and back from the catheter, respectively. The catheter was connected to a pressure transducer that was tied to the wool on the back of the head at the level of the brain. The location of the needle in the cerebral ventricle was further confirmed by demonstrating that ICP pulsed together with the arterial pulse. Throughout the experimental period, artificial CSF was infused at 0.6 mL/h.

Analogue signals for mean arterial pressure (MAP), heart rate (HR), CO, renal blood flow (RBF), CVP and ICP were recorded at 100 Hz on a computer with a micro1401 interface and Spike2 software (Cambridge Electronic Design). Blood and urine samples were obtained for measurement of creatinine, sodium, and potassium levels. Creatinine clearance, as a measure of glomerular filtration rate, and fractional excretion of sodium were calculated according to standard formulae. Arterial blood was obtained simultaneously for blood oximetry and measurement of lactate levels (ABL system 625; Radiometer Medical).

Experimental protocol

Study design

All experimental animals received normal saline, hypotonic commercially available albumin solution (4% Albumex, CSL Behring [Australia]) as used in the human trial, or an experimental, custom-made isotonic, isochloroem 4% albumin formulation (CSL Behring [Australia]) (Table 1). Albumin solutions were given in random order, within 2 days of each other to avoid development of an immune response to the second dose of human albumin. The saline infusion was given either 2 days before or 2 days after the infusions of 4% albumin. Following a baseline recording period of 1 hour, 500 mL of each solution was infused over 15 minutes, to simulate acute resuscitation in trauma patients, after which recordings were continued for 24 hours. Arterial blood samples were collected for measurement of levels of arterial blood gases, sodium and potassium, immediately before the infusions and at 1, 2, 4, 8 and 24 hours after the start of the infusions.

Statistical analysis

Data are shown as means with standard errors of means (SEMs), and all analysis was performed using Prism, version 6.0 (GraphPad). Statistical analysis was performed on baseline values and data collected at 0.25, 0.5, 1, 2, 4, 6, 8 and 24 hours after the start of solution infusion. Comparisons were made between the groups using two-way, repeated-measures analysis of variance with the factors treatment (Ptreatment: commercial 4% albumin solution or a modified experimental albumin solution or saline), time (P time) and their interaction (P interaction). These analyses were conducted on absolute values or the change from 0 to 24 hours after the start of solution infusion. All reported P values are two-tailed, and P < 0.05 was considered statistically significant.

Results

Baseline values

The levels of ICP, MAP, HR, RBF, CO, CVP, plasma electrolytes and arterial lactate were not significantly different between the 1 hour baseline periods on each of the 3 days before infusion of standard human albumin solution, isotonic human albumin solution or saline. No sheep experienced an immune response after the albumin infusions.
Changes in ICP after albumin infusions

The mean basal levels of ICP before the infusion of commercial hypotonic albumin, isotonic albumin and normal saline, were 6.7 mmHg (SEM, 1.0 mmHg), 10.2 mmHg (SEM, 1.7 mmHg) and 6.9 mmHg (SEM, 2.0 mmHg), respectively. After infusion of hypotonic 4% albumin solution, mean ICP progressively increased to a maximum of 8.5 mmHg (SEM, 2.1 mmHg) above the baseline value after 6 hours, and it remained increased at 8 hours before slowly declining over 24 hours (Figure 1). In contrast, after infusion of isotonic 4% albumin solution or normal saline, there were no significant increases in ICP above baseline levels over 24 hours after the infusions (Figure 1).

Systemic haemodynamic effects of albumin infusions

During the baseline period, MAP was 85.5 mmHg (SEM, 3.7 mmHg) and following infusion of commercial hypotonic 4% albumin solution it reached a maximum value of 96.1 ± 4.8 mmHg at the end of the 15-minute infusion, but this increase was not statistically significant (Figure 1). Infusion of either of isotonic albumin solution or normal saline had no significant effects on MAP (Figure 1). At the end of the 15-minute infusion of commercial hypotonic 4% albumin solution, CVP was significantly increased by 5.4 ± 0.6 mmHg (P < 0.001), compared with the change during normal saline (+1.9 ± 1.0 mmHg), following which CVP declined toward baseline levels (Figure 1). There was a smaller increase in CVP after infusion of isotonic albumin solution (+ 3.9 ± 0.5 mmHg, P < 0.05). Following all infusions there was a similar trend for HR to decrease, reaching a minimum after 4–6 hours, but these changes were not significant (Figure 2). There were no significant changes in CO, stroke volume or total peripheral conductance with any of the infusions (Figure 2).

Renal and electrolyte changes after albumin infusions

There were no significant changes in RBF or renal vascular conductance after either albumin infusion compared with the changes after infusion of normal saline (Figure 2). The levels of plasma creatinine, creatinine clearance and plasma and urinary electrolytes were not significantly affected. During the study there were also no significant changes in plasma creatinine, creatinine clearance, and fractional excretion of sodium or in plasma levels of sodium or chloride (Figure 3).

Discussion

Key findings

We performed an experimental study in conscious instrumented sheep to test whether a commercial hypotonic 4% albumin solution (4% Albumex), used in the Saline...
Critical Care and Resuscitation • Volume 20 Number 1 • March 2018

ORIGINAL ARTICLES

A bolus of a commercial hypotonic solution caused a substantial and sustained increase in ICP. Moreover, we found a greater increase in CVP with the commercial albumin solution, but no significant differences in the responses of other haemodynamic variables. Finally, we found no specific effect of albumin on RBF or renal function.

Relationship to previous findings

The mechanism of the effect of albumin on ICP as seen in the SAFE-TBI study has been unclear, but was hypothesised to be due either to the albumin molecule itself or to the low tonicity of the electrolyte solution containing albumin. Our study found that once the tonicity of the fluid containing albumin was modified to more closely simulate the tonicity of plasma, the increase in ICP was prevented and the ICP changes were the same as those seen with saline administration. This finding accords with the conclusion of the SAFE-TBI investigators, who suggested that a possible cause of the increase in ICP was due to rapid decreases in tonicity,3 because the albumin preparation used in the SAFE study (4% Albumex) is hypotonic (260 mOsmol/L) and about 26 mOsmol/L less than 0.9% saline and normal plasma.6 The current consensus statement on the use of colloid volume therapy in critically ill patients recommends that solutions other than albumin should be used in patients with head injury.7 However, such recommendations do not take into account the nature and tonicity of the solution containing albumin. In fact, the most likely mechanism of increased mortality in these patients after resuscitation with albumin was the acute increase in ICP with albumin therapy that occurred.

Figure 2. Cardiac output, total peripheral conductance, heart rate, stroke volume, renal blood flow and renal vascular conductance during a 1-hour baseline period (Time 0) and then up to 24 hours after infusion of study solutions (n = 6)

Dotted rectangles indicate the time the solutions were infused. Results are means with standard error of means (SEMs).
during the first week, as shown in a detailed post hoc analysis of ICP changes in monitored patients.³ Consistent with this proposal, our study showed that infusion of hypotonic albumin solution caused a prolonged and sizable (8.5 mmHg) increase in ICP in normal animals, but there was no increase in ICP with isotonic albumin.

It is unlikely that either the tendency for arterial pressure to increase, or the significant increase in CVP after infusion of hypotonic albumin, played a role in determining the increase in ICP, because the time courses of these changes were entirely different. After infusion of hypotonic albumin solution, ICP gradually increased to reach a peak at 6–8 hours, but MAP and CVP reached maximum values at the end of the 15-minute infusion and then decreased. Changes in CVP and MAP in association with volume expansion with albumin administration are consistent with clinical experience and the findings of the SAFE study.¹

Finally, to our knowledge, we are the first to report the effects of human albumin on RBF and renal function in a controlled experimental study in large animals. Our study does not support the use of albumin or saline to increase RBF or renal function in non-hypovolaemic states, as might be the case in insolated TBI.

Implications of findings

Our study implies that the increase in ICP in patients with TBI during the SAFE study using a commercially available hypotonic 4% albumin solution was not due to the albumin in the solution, but rather to the hypotonic nature of the solution. Moreover, our study implies that, even in a healthy brain, a modest decrease in the tonicity of fluid can cause major increases in ICP. Such increases are logically likely to be much more dramatic in the presence of TBI. In the aggregate, our observations suggest that even other relatively hypotonic fluids such as Hartmann's solution should be avoided in patients with TBI. Finally, our study implies that in non-hypovolaemic states, as might be seen in patients with isolated TBI, additional volume expansion with albumin or saline does not have discernible effects on RBF or renal function.

Strengths and limitations

Our study has several strengths. It addresses and resolves a phenomenon of clinical relevance that has not been fully explained. Studies were completed in conscious animals, without the confounding effects of anaesthesia. The infusion volume and rate (500 mL over 15 minutes) were clinically relevant.³

Our study has several limitations. There was a wide variation in baseline levels of

<table>
<thead>
<tr>
<th>Figure 3. Plasma sodium and chloride, plasma creatinine and creatinine clearance, and urine flow and fractional excretion of sodium in conscious sheep during a 1-hour baseline period (Time 0) and then up to 24 hours after infusion of study solutions (n = 6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dotted rectangles indicate the time the solutions were infused. Results are means with standard error of means (SEMs)</td>
</tr>
</tbody>
</table>
ICP (from 2.2 mmHg to 13.9 mmHg in individual animals), but this was similar to a study in healthy human subjects in which ICP varied from 7 mmHg to 15 mmHg. This wide range was also found in the SAFE-TBI study, in which mean ICP in the albumin-treated group was 15.0 mmHg (SD, 12.9 mmHg) and in the saline group it was 12.4 mmHg (SD, 7.2 mmHg). Our study was conducted in healthy sheep; in critically ill patients there may be breakdown of the blood–brain barrier, which will lead to greater increments in ICP after infusion of hypotonic albumin solution. However, such a state of injury would only serve to magnify the effect seen in healthy animals. Finally, our observation of the effect of albumin administration on haemodynamics and renal perfusion and function were also seen in healthy animals, and may not apply to hypovolaemic trauma patients. However, they may apply to patients with isolated TBI.

Conclusions
This study shows that a commercial hypotonic albumin solution increased ICP in healthy animals, but infusion of an isotonic solution of 4% albumin or of saline did not increase ICP. However, neither albumin solution significantly increased cardiac output, mean arterial pressure or renal perfusion and did not affect renal function. Our findings support the notion that it was the tonicity of the albumin solution, rather than the albumin molecule itself that was responsible for the increased ICP and increased mortality seen in the SAFE-TBI study. Thus, in non-hypovolaemic states, such as might be seen in isolated TBI, albumin-based volume expansion does not carry physiological benefits.

Acknowledgements
We received funding from the Victorian Government through the Operational Infrastructure Scheme, and from CSL Behring (Australia). Yugeesh Lankadeva was supported by a Postdoctoral Fellowship from the National Heart Foundation of Australia and Joseph Bertolini is employed by CSL. None of the other authors had any competing financial interests relevant to this study.

Author details
Naoya Iguchi1
Junko Kosaka1
Joseph Bertolini2
Clive N May1
Yugeesh R Lankadeva1
Rinaldo Bellomo3
1 Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia.
2 CSL Behring (Australia), Melbourne, VIC, Australia.
3 School of Medicine, University of Melbourne, Melbourne, VIC, Australia.
Correspondence: naoya.iguchi@florey.edu.au

References