Ventilator weaning using a fenestrated tracheostomy tube with a speaking valve

Masatoshi Fukumoto, Haruko Ota and Hajime Arima

ABSTRACT

We describe two patients with tracheostomies who showed difficulty in weaning from mechanical ventilation, but were eventually weaned after use of a fenestrated tracheostomy tube with a speaking valve. The first patient underwent mechanical ventilation after pulmonary bleeding, while the second needed ventilator support because of tracheomalacia. Both patients needed only slight ventilator support but developed respiratory distress when it was discontinued. When the standard tracheostomy tube was replaced by a fenestrated tracheostomy tube with a speaking valve, each patient was easily weaned from mechanical ventilation. With a valved tube, vocal cords can exert part of their original function during expiration. The valved tube allowed the first patient to control breath-holding, and the second to avoid tracheal collapse. Regaining vocal cord function improved their pulmonary mechanics, which was demonstrated by dramatic improvement of findings on chest x-ray and computed tomography. A fenestrated tracheostomy tube is usually used to improve daily activities of patients with tracheostomies, but might be worth trying for difficult ventilator weaning.

Tracheostomy is performed in patients who need long-term translaryngeal intubation. In patients requiring ventilator support, tracheostomy often also accelerates weaning from mechanical ventilation. However, some patients cannot be weaned despite minimal need for respiratory support. We report two patients with tracheostomies who had difficulty in weaning, but were finally freed from mechanical ventilation through use of a fenestrated tracheostomy tube with a speaking valve.

Clinical records

Patient 1
An 81-year-old man underwent mechanical ventilation because of respiratory failure associated with pulmonary bleeding. As weaning was difficult, tracheostomy was performed on Day 29 in the ICU. Weaning was accelerated, but he continued to need slight ventilator support (pressure support, 2 cmH2O; positive end-expiratory pressure, 5 cmH2O). When ventilator support was discontinued, respiratory rate increased, and arterial oxygenation deteriorated. As we considered that effective vocal cords might resolve the impasse, a fenestrated tracheostomy tube with a speaking valve (KOKEN Co Ltd, Tokyo, Japan) was substituted for a standard tracheostomy tube on ICU Day 40. We used a non-cuffed tube, allowing inspiratory flow to pass through both the tube and the patient’s vocal cords, while expiratory flow passed only through the vocal cords. Immediately after the tube exchange, there was an increase in the duration of chest wall expansion in the respiratory cycle (Figure 1), and no deterioration in arterial oxygenation when ventilator support was withdrawn and replaced by supplemental oxygen therapy via mask. Vocal cord movement was confirmed by fibreoptic inspection. Chest x-ray 5 days after the tube exchange showed a decrease in atelectasis.

Patient 2
An 86-year-old man underwent mechanical ventilation for aspiration pneumonia. As weaning was difficult, tracheostomy was performed on ICU Day 21. Although the patient needed only slight ventilator support, he developed wheezing, and arterial oxygenation deteriorated when this support was discontinued. Fibreoptic bronchoscopy under spontaneous respiration showed tracheomalacia during expiration. Considering his age, conservative therapy was chosen, even though this might take longer than surgical therapy to achieve complete weaning from ventilator support. On ICU Day 51, the valved tracheostomy tube (same as that used in Patient 1) was tried. Arterial oxygenation did not deteriorate when ventilator support was withdrawn and replaced by supplemental oxygen via mask. He did not become wheezy. Chest computed tomography 18 days after the tube exchange showed a remarkable decrease in atelectasis (Figure 2).

Discussion
The decision to perform tracheostomy is based on consideration of its advantages versus disadvantages. Advantages include more effective airway suctioning and improved patient comfort, which sometimes accelerate weaning from mechanical ventilation. However, mortality rate of tracheostomised patients is much higher when they are...
dependent on a ventilator. Therefore, whether the patient can be freed from mechanical ventilation is a key factor influencing prognosis.

Vocal cords determine airflow, pattern of breathing and airway resistance. When vocal cords are bypassed with a tracheal tube or a standard tracheostomy tube, these functions are disturbed. During normal respiration, vocal cords begin to move toward the midline at the end of inspiration, and the glottis aperture remains narrowed until about 95% of the expiratory time has elapsed. Vocal cord movement contributes to maintaining pulmonary function; reduced functional residual capacity has been seen after tracheostomy, as well as reduced arterial oxygenation.

In Patient 1, the respiratory pattern showed remarkable change after the tube exchange, attributable to the patient regaining vocal cord function. With functioning vocal cords, he could control breath-holding and expiratory resistance. In Patient 2, the respiratory pattern showed less change after the tube exchange, but he did not develop wheezing. We speculate that native expiratory resistance provided by the vocal cords prevented tracheal collapse during expiration, and that vocal cord function helped to maintain greater functional residual capacity.

In summary, we describe two tracheostomised patients with difficulty in weaning who could be freed from mechanical ventilation after a standard tracheostomy tube was replaced by a fenestrated tracheostomy tube with a speaking valve. Utilising the vocal cords in respiration contributes to improving pulmonary mechanics in tracheostomised patients. A fenestrated tracheostomy tube is usually used to improve daily activities of tracheostomised patients, but we consider it worth trying for patients showing difficulty in weaning from mechanical ventilation.

Author details
Masatoshi Fukumoto, MD
Haruko Ota, MD
Hajime Arima, MD
Department of Anesthesia and Intensive Care, Okazaki City Hospital, Okazaki, Japan.
Correspondence: fukumotoke@m3.catvmics.ne.jp
CASE REPORTS

References

1 Heffner JE. The role of tracheotomy in weaning. Chest 2001; 120: 477S-81S.

The 9th Australian

INTENSIVE CARE MEDICINE

CLINICAL REFRESHER COURSE

A Clinical Refresher Course in Intensive Care Medicine will be held from Friday to Sunday late August or early September 2006. It will be held at the Princess Alexandra, Wesley, Royal Brisbane and Prince Charles Hospitals, Brisbane, Queensland. The course will be suitable for candidates preparing for the final examination in Intensive Care (adult component) Joint Faculty of Intensive Care Medicine, Australian and New Zealand College of Anaesthetists and Australasian College of Physicians.

The course will have 4 introductory lectures on the Friday evening, 8 seminar tutorial sessions on the Saturday and 4 tutorial sessions on the Sunday.

Apart from three introductory lectures (on the evening of the first day), sessions will emulate the JFICM Part II examination process (eg, trial "clinicals" with short cases and long cases, OSCEs [eg, investigations with biochemistry, microbiology, ECGs, CXRs and vivas]).

It is expected that there will be one examiner per two candidates allowing a large degree of interaction and personal tutoring. The tutorial sessions will be 45 minutes long with 10 minutes between sessions to allow time for questions and a smooth changeover. Accommodation at various nearby locations will be made available on request.

The fee for the course is $440 (incl. GST). Closing date for registration is late July 2004. The program, course details and introductory notes will be posted to registrants one month before the course.

REGISTRATION FORM

Surname ...
Given name ...
Address ...
..
..
Phone Fax
Hospital ...
When are you sitting the JFICM Part II exam? 20

Please make cheque/money order of $440 payable to the: Australasian Academy of Critical Care Medicine or “The Academy”,
or charge to Bankcard □ Mastercard □ Visa □
Card Number ____________________________
Expiry date /
Signature ...
Cardholder’s name ..

Application for registration should be made to the course secretary: Mr K Scandrett
Department of Intensive Care Medicine
Royal Brisbane Hospital
Herston, QLD 4029
Ph: (07) 3636 8897
Fax: (07) 3636 5542

or the course organiser:
Dr B Venkatesh
Email: bala_venkatesh@health.qld.gov.au