ABSTRACT

Objective: To determine the variables predicting the change of plasma phosphate over the first 24 hr period in intensive care in patients with acute respiratory failure

Methods: Fifty-seven patients were studied prospectively in a university teaching hospital intensive care unit (ICU). Thirty two patients were classified as having acute respiratory failure and a primary respiratory system diagnosis (group I), 10 were classified as having acute cardiogenic pulmonary oedema (group II) and 15 were general ICU patients (group III). Arterial blood specimens at intensive care unit admission \((T_0)\) and at 24 hr post-admission \((T_{24})\) were assayed for multiple plasma biochemical parameters including phosphate \((PO_4)\) and red blood cell 2,3-diphosphoglycerate \((2,3-DPG)\). Timed urine collections were used to determine 24 hr urine phosphate loss and renal phosphate threshold concentration \((RTP)\). During the measurement period glucose-free fluids only were infused.

Results: Fifty seven patients had a mean \((\pm SD)\) age of 67 \pm 12 years and Apache II score of 22 \pm 6. The plasma \(PO_4\) at \(T_0\) was 1.55 \pm 0.71 mmol/L and showed a significant 24 hr decrease of 0.55 mmol/L \((p < 0.0001)\) at \(T_{24}\). Hypophosphataemia at \(T_0\) was observed in 26% of patients. Red blood cell 2,3-DPG was not elevated at \(T_0\) \((13.5 \pm 3.3 \text{ umol/gHb})\) and showed a non-significant increment over 24 hr. Urine phosphate loss over the 24 hr period was 21.8 \pm 14.0 mmol with RTP being reduced below the lower reference range limit in groups I \((0.65 \pm 0.29 \text{ mmol/L})\) and II \((0.57 \pm 0.29 \text{ mmol/L})\). The naive form of phosphate change \((PO_4T_{24} - PO_4T_0)\) was significantly related to initial plasma \(PO_4\) and was subject to regression to the mean, which was estimated to have inflated the relationship by 25%. The appropriate form of phosphate change was found to be log ratio \(T_{24}/T_0\) phosphate. Independent predictors of log ratio \(T_{24}/T_0\) phosphate were 24 hr change \((T_{24} - T_0)\) in both 2,3-DPG and arterial pH, RTP, prescription of aminophylline \((\text{categorical factor})\) and the interaction of aminophylline and RTP \((R^2 = 0.65, \text{ordinary least squares regression})\).

Conclusions: Twenty-four hour plasma phosphate decrement in intensive care unit patients was multifactorial and was attended by a lowered renal threshold phosphate concentration. (**Critical Care and Resuscitation 2002; 4: 93-103**)

Key words: phosphate metabolism, acute respiratory failure, 2,3-diphosphoglycerate, renal threshold phosphate concentration, multivariable regression, bootstrap, multiple imputation, model uncertainty, regression to the mean, logarithmic transformation

Correspondence to: Dr. J. L. Moran, Intensive Care Unit, Queen Elizabeth Hospital, Woodville, South Australia \((e-mail: john.moran@nwahs.sa.gov.au)\)
Profound disturbances of inorganic phosphate metabolism have been observed during the course of respiratory illness associated with acute respiratory failure. In non-intensive care unit patients, phosphate metabolic changes (e.g. hypophosphataemia, low muscle phosphate content with defective muscle metabolism and “inadequate” renal phosphate handling) have been reported in the clinically stable state.1,2 In the critically ill intensive care unit (ICU) patient, both admission hyperphosphataemia and acute hypophosphataemia associated with acute respiratory failure and mechanical ventilation have also been reported.3-9 Cellular phosphate changes and renal phosphate handling have usually been inferred from either observed changes of blood inorganic phosphate and other blood chemistry variables (e.g. arterial blood gas parameters). However, phosphate metabolism in the acute phase of respiratory failure necessitating ICU admission and ventilation would not appear to have been systematically evaluated. A prospective study was undertaken to investigate phosphate metabolism in patients over the first 24 hr after admission to the ICU, by measuring the change (Δ) of plasma phosphate and red blood cell 2,3-diphosphoglycerate concentration (as an index of intracellular phosphate shift)10 and the renal phosphate handling during the 24 hr period.4

METHODS
The study was approved by the Queen Elizabeth Hospital Ethics of Research Committee.

Patients and patient definitions
Patients were enrolled on admission to the ICU with diagnoses of:

i) acute respiratory failure (Group I). Acute respiratory failure was defined as a syndrome comprising clinical signs (cyanosis, dyspnoea, impaired conscious state and signs of respiratory muscle exhaustion) with a PaO2 < 60 mm Hg on room air (or PaO2/FIO2 < 286 on oxygen) and/or decompensated respiratory acidosis.11 Patient diagnostic categories were: a) asthma and chronic obstructive pulmonary disease as defined by the 1987 American Thoracic Society statement12 and, b) pneumonia, defined as a clinical syndrome of respiratory distress as evidenced by a combination of fever, leukocytosis, purulent sputum and chest X-ray opacity.13

ii) cardiogenic acute pulmonary oedema (Group II).14,15 Cardiogenic acute pulmonary oedema was defined as a syndrome of acute onset of dyspnoea with clinical findings consistent with pulmonary oedema (increased work of breathing, gallop rhythm, widespread auscultatory crepitations in the absence of any history of respiratory infection) and appropriate radiological changes.16

iii) general ICU patients (Group III), with primary diagnoses other than respiratory failure and/or cardiogenic pulmonary oedema.

Plasma phosphate reference range was 0.8 - 1.45 mmol/L. Hypophosphataemia was classified as mild (0.61 - 0.8 mmol/L), moderate (0.32 - 0.6 mmol/L) and severe (< 0.32 mmol/L).17,18 Hyperphosphataemia was defined as a plasma concentration exceeding 1.45 mmol/L.

Protocol
Patients were observed over a 24 hr period.

1. All patients had continuous monitoring of heart rate, intravascular blood pressure via indwelling arterial catheters (Sirecust 404-1, Siemens, Erlangen, Germany) and pulse oximetry (Biox 3740, Ohmeda, Boulder, CO). Where indicated, mechanical ventilation was provided by Puritan-Bennett PB7200ae microprocessor controlled ventilators (Puritan Bennett Corp, Overland Park, KS).

2. Intravenous fluids as 0.45% or 0.9% saline only were used for the first 24 hr in the ICU, to avoid hypophosphataemia due to concomitant infusion of glucose-containing fluids.7 No phosphate or magnesium-containing fluids were given during this period. Potassium (as potassium chloride) was supplemented in maintenance fluids to maintain plasma potassium ≥ 4.0 mmol/L.

3. At study entry (ICU admission T0) and at 24 hr post ICU admission (T24), arterial blood specimens were taken for measurements of:

i) plasma biochemical variables (measured on a Technicon DAX random access analyser, Bayer Australia Ltd, using standard chemical analyses). Calcium levels corrected for plasma albumin by 0.02 mmol/L per g of albumin (to a value of 40 g/L).19

ii) arterial blood gases (analysis was performed using the ABL3 Acid-Base Laboratory Radiometer, Copenhagen, Denmark).

iii) plasma lactate (measured by conversion to pyruvate with reduction of NAD to NADH).20

iv) intact parathyroid hormone (2-site chemi-luminometric immunoassay, Ciba Corning Magic Lite Intact PTH).

v) red blood cell 2,3-diphosphoglycerate (RBC 2,3-DPG); concentration was determined after the method described by Luzzato (reference range 9.4 - 16.9 umol/g of haemoglobin).21

4. At T0 a random urine sample was taken followed by a 24 hr urine collection. Both specimens were assay-
ed for concentrations of sodium, potassium, creatinine, calcium, magnesium and phosphate.

5. Between 1000 to 1200 hr on the day after admission, a two hour urine collection and arterial blood sample at mid-point were taken. The time from admission to the beginning of the two hour collection was recorded (time delay of collection for real threshold phosphate). Urine and plasma concentrations of creatinine and phosphate urine volume were measured.

i) Clearance of creatinine and phosphate were calculated according to the formula:

\[
\text{Clearance (mL/min)} = \frac{\text{Urine conc (mmol/L) \times Urine vol (mL/2 hr)}}{\text{Plasma conc (mmol/L)}} \times 120
\]

ii) Renal threshold phosphate concentration (RTP) was calculated using the Walton and Bijvoet nomogram, which derives RTP from concomitant values of plasma phosphate and the ratio of phosphate to creatinine clearance.22

iii) Fractional excretion of phosphate (\(FE_{PO4}\)) was calculated according to the formula:23

\[
\text{\(FE_{PO4} = \frac{[(U/P)PO4/(U/P)Cr]}{100}\)}
\]

Where,

\(U\) and \(P\) = urine and plasma concentrations

\(PO4 = \) phosphate (mmol/L)

\(Cr = \) creatinine (mmol/L)

6. An APACHE II score24 was recorded over the first 24 hr. Patient details, pertinent to the study (e.g. diagnosis, age, sex, mechanical ventilation and prescription of diuretic, corticosteroids, aminophylline and sympathomimetic agents), were recorded separately.

Statistical analysis

Variables are reported as mean ± SD unless otherwise indicated. Interval data were analysed by t-test (differences (\(\Delta\)) \(T_{24}\) relative to \(T_0\)) and categorical by Pearson \(\chi^2\) and Fisher exact tests, where appropriate. Variable relations were analysed by analysis of variance and ordinary least squares regression (OLS). Statistical software was used.25 Multivariable linear regression was used to establish quantitative relationships between key physiological predictor variables of \(\Delta\) phosphate.

The appropriate analytic form for \(\Delta\) phosphate was investigated by regression of candidate variables: a) change (\(T_{24}-T_0\) phosphate), b) percentage change (\(\frac{(T_{24}-T_0 \text{ phosphate})}{T_0 \text{ phosphate} \times 100}\)), c) ratio (\(T_{24} \text{ phosphate}/T_0 \text{ phosphate}\)) and d) log ratio (\(\log \frac{T_{24} \text{ phosphate}}{T_0 \text{ phosphate}}\)) against both initial phosphate (\(T_0\) phosphate) and average phosphate (\(\frac{T_0 \text{ phosphate} + T_{24} \text{ phosphate}}{2}\)), as suggested by Harrell,26 to find a dependent variable not related to initial values (\(T_0\) phosphate). Normality was assessed by kernel density estimation,27 and specific tests (Shapiro-Wilk). To establish the propriety of change vs percentage change, Kaiser’s R was also calculated.28

The effect of regression to the mean on the coefficient of the of the change vs initial phosphate relationship, was computed after Blomqvist’s method:29,30 \(\beta^* = \frac{\beta^2 + (1-p)}{p}\), where \(\beta^2\) is the regression slope of change on initial phosphate, as derived from the data-set and \(p = 1 - \delta^2/\sigma^2\), where is \(\delta^2\) is the observed variance of measured initial (\(T_0\)) values and \(\sigma^2\) is an estimate from an “external” source of within-subject variance. Estimates of \(\delta^2\) were obtained from computerised records of patients admitted to the ICU; duplicate values of phosphate were obtained at admission from patients admitted from 1998-1999, where the difference between time of admission and time of duplicate observation was < 3 hr.

Predictor variables were defined by a backward selection process,31 with Akaike information criterion,32 corresponding to a nominal p value of 0.157 for step-wise selection.33 Consistency of variable selection was investigated by using bootstrap (1000 samples) of the backward selection with \(p = 0.157\) and recording the variables selected with a frequency > 50% in the OLS regression.33-35 Multi-collinearity (variance inflation factors [VIF] < 10 and condition number < 15),36 interactions (adjusted for multiple comparisons after Holm37) and predictor non-linearity were also investigated.38 Where non-linearity was evident, covariate effect was modelled using fractional polynomials.39 Specific attention was paid to the selection problems with highly correlated (\(r > 0.5\)) variables;40 a) arterial pH and PaCO\(_2\), b) fractional excretion of phosphate, 24 hr urine phosphate excretion and renal threshold phosphate. Models assessed were: OLS and generalised linear model (GLM) with the log link.41 Models were compared using estimates of fit:42-43 \(R^2\), adjusted \(R^2\), AIC and adjusted likelihood ratio index.

A set of key predictor variables in addition to the candidate variables for \(\Delta\) phosphate were defined and any missing value pattern was identified.44 The data set was tested for “missingsness” being completely at random (MCAR; that is, the missing values were a random subsample of the entire data-set),45 utilising the missing value module provided in Systat® statistical software.46 To explore the impact of missing values on regression estimates (i) a complete data set of key
predictors was generated using the expectation-maximisation (EM) algorithm and (ii) a multiple imputation approach (k=10 data sets, using data-augmentation techniques) after Schafer was adopted.

RESULTS
Fifty seven patients, 32 males and 25 females with a mean (± SD) age of 67 ± 12 years and Apache II score 22 ± 6, of whom 32 were ventilated, were enrolled into the study. In Group I, patient diagnoses (n = 32) were: exacerbation of chronic obstructive pulmonary disease (COPD) with acute respiratory failure (n = 20), pneumonia (n = 10) and status asthmaticus (n = 2). Group II comprised 10 patients with acute pulmonary oedema; no patient had a diagnosis of myocardial infarct based upon 12 lead electrocardiogram and creatine kinase estimation. In Group III diagnoses were: postoperative abdominal aortic aneurysm (n = 3), gastrointestinal perforation (n = 3), septic shock (n = 4); post cardiac arrest (n = 3), overdosage (n = 1) and subarachnoid haemorrhage (n = 1). Details of the 3 diagnostic groups are given in Table 1.

Table 1. Patient diagnostic groups

<table>
<thead>
<tr>
<th>Variable</th>
<th>Group I</th>
<th>Group II</th>
<th>Group III</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>32</td>
<td>10</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td>67 ± 11</td>
<td>67 ± 12</td>
<td>68 ± 16</td>
<td>NS</td>
</tr>
<tr>
<td>APACHE II score</td>
<td>20 ± 5</td>
<td>24 ± 3</td>
<td>24 ± 9</td>
<td>NS</td>
</tr>
<tr>
<td>Sex (M/F)</td>
<td>18/14</td>
<td>6/4</td>
<td>8/7</td>
<td>NS</td>
</tr>
<tr>
<td>Mechanical ventilation</td>
<td>18</td>
<td>6</td>
<td>11</td>
<td>NS</td>
</tr>
<tr>
<td>Diuretics</td>
<td>9</td>
<td>10</td>
<td>4</td>
<td>0.0001</td>
</tr>
<tr>
<td>Corticosteroids</td>
<td>23</td>
<td>1</td>
<td>3</td>
<td>0.0001</td>
</tr>
<tr>
<td>Aminophylline</td>
<td>26</td>
<td>3</td>
<td>1</td>
<td>0.0000</td>
</tr>
<tr>
<td>Sympathomimetics</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>0.0002</td>
</tr>
</tbody>
</table>

Values for age and Apache II score are given as mean ± SD.

Table 2. Initial (T0) values (mean ± SD) for group variables

<table>
<thead>
<tr>
<th>Variable (normal reference range)</th>
<th>Group I</th>
<th>Group II</th>
<th>Group III</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phosphate (0.8 - 1.45 mmol/L)</td>
<td>1.45 ± 0.66</td>
<td>2.06 ± 0.81</td>
<td>1.42 ± 0.66</td>
<td></td>
</tr>
<tr>
<td>RBC 2,3-DPG (9.4 - 16.9 μmol/gHb)</td>
<td>13.5 ± 85</td>
<td>10.85 ± 2.68</td>
<td>14.67 ± 3.81</td>
<td></td>
</tr>
<tr>
<td>pH (7.36 - 7.44)</td>
<td>7.31 ± 0.14</td>
<td>7.23 ± 0.12</td>
<td>7.36 ± 0.17</td>
<td></td>
</tr>
<tr>
<td>PaCO2 (35 - 45 mmHg)</td>
<td>62 ± 32Δ</td>
<td>47 ± 10</td>
<td>37 ± 11</td>
<td></td>
</tr>
<tr>
<td>Bicarbonate (22 - 30 mmol/L)</td>
<td>28 ± 86³</td>
<td>19 ± 4</td>
<td>22 ± 4</td>
<td></td>
</tr>
<tr>
<td>PaO2/FIO2</td>
<td>227 ± 116</td>
<td>143 ± 76</td>
<td>256 ± 150</td>
<td></td>
</tr>
<tr>
<td>Lactate (0.5 - 2.0mmol/L)</td>
<td>2.4 ± 1.5²</td>
<td>6.5 ± 5.3³</td>
<td>3.7 ± 3.2</td>
<td></td>
</tr>
<tr>
<td>Parathyroid hormone (1.0 - 7.0 pmol/L)</td>
<td>5.7 ± 4.4²</td>
<td>20.7 ± 19.4²³</td>
<td>4.2 ± 2.6²³</td>
<td></td>
</tr>
<tr>
<td>Glucose (3.0 - 5.0 mmol/L)</td>
<td>11.4 ± 5.1³</td>
<td>20.2 ± 11.7³</td>
<td>10.6 ± 4.7³</td>
<td></td>
</tr>
<tr>
<td>Calcium (2.10 - 2.60 mmol/L)</td>
<td>2.31 ± 0.16</td>
<td>2.24 ± 0.14</td>
<td>2.39 ± 0.21</td>
<td></td>
</tr>
<tr>
<td>Creatinine (0.05 - 0.12 mmol/L)</td>
<td>0.093 ± 0.036³</td>
<td>0.201 ± 0.151³</td>
<td>0.115 ± 0.054³</td>
<td></td>
</tr>
<tr>
<td>Urine phosphate (5 - 80 mmol/L)</td>
<td>21.3 ± 21.4</td>
<td>14.6 ± 6.5</td>
<td>14.7 ± 10.2</td>
<td></td>
</tr>
<tr>
<td>Urine sodium (0 - 300 mmol/L)</td>
<td>71 ± 41</td>
<td>85 ± 32</td>
<td>66 ± 46</td>
<td></td>
</tr>
<tr>
<td>24 hr urine phosphate (16 - 48mmol)</td>
<td>22.5 ± 14.0</td>
<td>22.7 ± 10.6</td>
<td>19.9 ± 16.6</td>
<td></td>
</tr>
<tr>
<td>24 hr urine sodium (0 - 300 mmol)</td>
<td>130 ± 103</td>
<td>218 ± 183</td>
<td>117 ± 129</td>
<td></td>
</tr>
<tr>
<td>RTP (0.8 - 1.35 mmol/L)</td>
<td>0.65 ± 0.29</td>
<td>0.57 ± 0.29</td>
<td>1.09 ± 0.50Åë</td>
<td></td>
</tr>
<tr>
<td>FEPO4 (6 - 20%)</td>
<td>27 ± 22</td>
<td>35 ± 23</td>
<td>19 ± 13</td>
<td></td>
</tr>
</tbody>
</table>

(* or #, p < 0.01 and ** or ##, p < 0.001) indicate significant differences in pairwise comparisons (across groups); (Δ, p < 0.01 and ΔΔ, p < 0.001) indicate single group difference with respect to two other groups, RBC 2,3-DPG, Red blood cell 2,3-diphosphoglycerate, FEPO4, fractional excretion of phosphate, RTP, renal threshold phosphate concentration.
Table 3. Initial (T0) and 24 hour (T24) values (mean ± SD) for variables

<table>
<thead>
<tr>
<th>Variable (normal reference range)</th>
<th>T0</th>
<th>T24</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phosphate (0.8 - 1.45 mmol/L)</td>
<td>1.55 ± 0.71</td>
<td>1.00 ± 3.0</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>RBC 2,3-diphosphoglycerate (9.4 - 16.9 umol/gHb)</td>
<td>13.5 ± 3.3</td>
<td>14.1 ± 3.0</td>
<td>NS</td>
</tr>
<tr>
<td>pH (7.36 - 7.44)</td>
<td>7.31 ± 0.15</td>
<td>7.42 ± 0.07</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>PaCO₂ (35 - 45 mmHg)</td>
<td>53 ± 7</td>
<td>44 ± 15</td>
<td>0.008</td>
</tr>
<tr>
<td>Bicarbonate (22 - 30 mmol/L)</td>
<td>25 ± 8</td>
<td>27 ± 7</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>PaO₂/FlO₂</td>
<td>222 ± 122</td>
<td>220 ± 111</td>
<td>NS</td>
</tr>
<tr>
<td>Lactate (0.5 - 2.0 mmol/L)</td>
<td>3.4 ± 3.1</td>
<td>1.8 ± 1.0</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Parathyroid hormone (1.0 - 7.0 pmol/L)</td>
<td>7.8 ± 10.1</td>
<td>7.3 ± 7.05</td>
<td>NS</td>
</tr>
<tr>
<td>Glucose (3.0 - 5.0 mmol/L)</td>
<td>12.7 ± 7.4</td>
<td>8.3 ± 2.3</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Calcium (2.10 - 2.60 mmol/L)</td>
<td>2.32 ± 0.18</td>
<td>2.31 ± 0.19</td>
<td>NS</td>
</tr>
<tr>
<td>Creatinine (0.05 - 0.12 mmol/L)</td>
<td>0.12 ± 0.08</td>
<td>0.108 ± 0.08</td>
<td>NS</td>
</tr>
<tr>
<td>Urine phosphate (15 - 45 mmol/L)</td>
<td>18.3 ± 17.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urine sodium (0 - 300 mmol/L)</td>
<td>73 ± 41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24 hr urine phosphate (16 - 48 mmol)</td>
<td>21.8 ± 14.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24 hr urine phosphate/creatinine (1.8 - 2.7)</td>
<td>2.8 ± 1.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24 hr urine sodium (0 - 300 mmol)</td>
<td>142 ± 129</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTP (0.8 - 1.35 mmol/L)</td>
<td>0.76 ± 0.39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEPO₄ (6 - 20%)</td>
<td>26 ± 20</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RTTP, renal threshold phosphate concentration, RBC = Red blood cell, FEPO₄, fractional excretion of phosphate. Phosphate/creatinine measured in mmol. P refers to significance of t-test for T24-T0.

Groups were comparable for age, sex, ventilatory status and Apache II scores, but differed in frequency of prescription of the therapeutic agents parenteral diuretic, corticosteroids, aminophylline and sympathomimetics.

Initial (T0) values for variables in the three groups are shown in Table 2. At T0, 3 patients (one in each Group) had mild hypophosphataemia, 25 (17 in Group I and 8 in Group III) had normal levels and 29 (14 in Group I, 9 in Group II and 6 in Group III) were hyper-phosphataemic. All groups showed a 24 hr decreament of plasma phosphate (non-significant in Group III).

Red blood cell 2,3-diphosphoglycerate concentrations showed 24 hr increments in Groups I and II, but a slight decrease in Group III (the changes were non-significant). Arterial blood gas variables showed initial acidemia in all groups and hypercapnia in Group I. All variables tended to normalise over the 24 hr observation period.

Variables for which intergroup differences existed were: plasma lactate (T0), parathyroid hormone (T0 and T24 - T0 value) and glucose (T0 and T24 - T0 value). Statistically significant differences (T24 - T0) were found for the following variables: phosphate, pH, PaCO₂, bicarbonate, lactate and glucose (Table 3). At T24, 15 patients (26%) had hypophosphataemia; 13 in Group I and one patient each in Groups II and III. Of these 15 patients, 9 had mild, 4 had moderate and 2, both Group I, had severe hypophosphataemia.

Twenty four hour urinary phosphate and sodium excretions showed no significant difference between groups, whether expressed as absolute amount (mmol/24 hr) or relative to urine volume and/or creatinine excretion per 24 hr. Two-way analysis of variance revealed no diagnostic-group/furosemide prescription effect with respect to 24 hr urine sodium excretion. Time delay of collection before assessment of renal threshold phosphate was 16 ± 6 hr and no relationship was demonstrated between renal threshold phosphate and this time delay (p = 0.11; no evidence of non-linear relationship). Renal threshold phosphate concentration showed a reduction below reference range in Groups I and II (0.65 ± 0.29 and 0.57 ± 0.29, respectively). Values were significantly lower for both groups compared with Group III (1.09 ± 0.50, p = 0.001). Of the 15 hypophosphataemic patients at T24, 13 had renal threshold phosphate concentrations < 0.8 mmol/L, compared with 20 of 40 patients who were normo- or hyperphosphataemic (Fisher exact, p = 0.01).

Concerning the relations between “candidate” Δ variables and initial and average phosphate; phosphate change was significantly related to both initial (phosphate change = 0.673 - 0.787 x T₀PO₄; R² = 0.72, p = 0.0001) and average (phosphate change = 0.522 - 0.836 x average phosphate; R² = 0.35, p = 0.0001) phosphate values. Kaiser’s R, computed at 0.73, favoured percentage change as a predictor. Percentage change, ratio and
log-ratio demonstrated a significant relation to T_0 phosphate, but no relation ($p > 0.12$ for all) to average phosphate suggesting an independence from initial values for this variable. However, only log-ratio phosphate was normally distributed and was thus adopted as the appropriate form of Δ phosphate.

The confounding effect of regression to the mean was quantified by the use of Blomqvist’s adjustment of the regression relationship change vs T_0 phosphate. The initial relation was: phosphate change $= 0.673-0.787(T_0 \text{PO}_4);$ $p = 0.000$, $R^2 = 0.35$, s^2 (T_0 variance) was 0.51 and δ^2 (within-subject “external variance”) was 0.243, yielding a corrected β of -0.593, a 25% reduction in effect.

Predictive models

Using log ratio T_{24}/T_0 phosphate as the form of Δ phosphate (the dependent variable), the significant predictors initially identified by backward selection were Δ 2,3-diphosphoglycerate, Δ pH and renal threshold phosphate concentration. No effect of time delay of collection before renal threshold measurement was evident ($p = 0.58$). Further exploration, guided by theoretical considerations, identified a significant ($p = 0.003$) interaction between the prescription of aminophylline and renal threshold phosphate concentration No multi-colinearity was present. By bootstrap of the backward selection process, the variables selected (frequency > 50%) were Δ 2,3-diphosphoglycerate, Δ pH, renal threshold phosphate concentration and aminophylline. This occurred in both the initial and complete (EM) data sets. Parameter estimates with standard errors (SE) and p values and indices of model fit for the models are seen in Table 4. Non-linearity of covariate effect was not demonstrated. Estimates of fit (R^2, adjusted R^2 and adjusted likelihood ratio index, R^2_{adj}) were comparable between OLS and GLM, but the lower AIC favoured the GLM model.

Missing data

The initial variables considered in the full data set were 19 in number and missing values occurred in 10 (all continuous variables). The frequency of missing values (per variable) ranging from 2 to 17%. The p-value for Little’s MCAR test was 0.8, indicating that the missing data was in fact a random sub-sample of the dataset. Model parameters using multiple imputation are seen in Table 5; parameter estimates and standard errors were consistent with those of the original dataset. Because of missing values in the initial data set, observation number (n) for the multivariable models was reduced to 46 compared with 57 for the complete (EM) and multiple imputation data sets. No difference existed between the set of means of (continuous) key predictor variables of the initial data set and i) the complete EM data set (Hotelling’s T-squared test) and ii) the $k = 10$ multiply imputed data sets (t-test, data not shown). Data summaries are therefore reported from the initial data set.

DISCUSSION

Previous studies have suggested an association between respiratory illness and both hyper- and hypophosphataemia. Fisher et al., in a retrospective study, reported a 13% incidence of admission hypophosphatemia in “acute respiratory illness”, but no correlation between arterial blood gases and serum phosphate levels. In stable COPD patients, serum phosphate levels were reported to be significantly lower than controls (0.96 ± 0.25 vs 1.17 ± 0.11 mmol/L, respectively). In hospitalised patients studied a mean of 14 days post admission, 23% had serum phosphate levels < 0.81 mmol/L and 9% < 0.64 mmol/L. However, in critically ill COPD patients ($n = 14$) with acute respiratory failure, Labaan et al., found high-normal initial phosphate levels (1.21 mmol/L) in 9 patients and hyperphosphatemia in 5 patients. Both acute respiratory acidosis, and metabolic acidosis are associated with hyperphosphatemia. Our study confirmed this association with a 40% incidence of hyperphosphatemia in patients admitted with acute respiratory failure (Groups I & II). This was best demonstrated by contrasting Group II patients, where a mixed acidosis was present and 9 of 10 patients were hyperphosphatemic with Groups I & III combined, where 20 of 47 patients were hyperphosphataemic (Fisher exact test, $p = 0.01$).

Decrease in plasma phosphate over the initial treatment period of acute respiratory failure has been previously noted, especially during mechanical ventilation and was evident in the current study, being significant (compared with T_0 values) in Groups I and II only. Delta pH was a significant independent variable in this study and mechanical ventilation (postulated as a “key” factor in previous studies), is thus a surrogate for the induced change of Δ pH and ΔPaCO_2, with which Δ pH was obviously highly correlated; rho $= -0.84$, $p = 0.0001$.

The effects of other potentially important predictors must also be considered: i) pre-admission treatment variables (while these may have affected phosphate metabolism, there was no group difference in time-zero urine phosphate or sodium excretion, expressed absolutely, Table 2, or relative to creatinine excretion), ii) extracellular volume change (possible group differences were not reflected in any urinary excretion index nor in the effect of administered diuretics), iii) mechanical ventilation (the effect of different modes of ventilatory support was not explored), iv) gastrointestinal phosphate
Table 4. Parameter and SE estimates with performance indices of multivariable models

<table>
<thead>
<tr>
<th>Model</th>
<th>Parameter (SE)</th>
<th>OLS: p</th>
<th>GLM: log link: p</th>
<th>GLM: eform</th>
</tr>
</thead>
<tbody>
<tr>
<td>del RBC 2,3-DPG</td>
<td>0.043 (0.024)</td>
<td>0.07</td>
<td>0.057 (0.03)</td>
<td>0.06</td>
</tr>
<tr>
<td>del pH</td>
<td>-2.01 (0.344)</td>
<td>0.0001</td>
<td>-2.715 (0.598)</td>
<td>0.0001</td>
</tr>
<tr>
<td>RTP</td>
<td>0.965 (0.30)</td>
<td>0.003</td>
<td>0.740 (0.364)</td>
<td>0.04</td>
</tr>
<tr>
<td>aminophylline</td>
<td>0.836 (0.261)</td>
<td>0.003</td>
<td>0.611 (0.351)</td>
<td>0.08</td>
</tr>
<tr>
<td>amin_rtp</td>
<td>-0.99 (0.349)</td>
<td>0.007</td>
<td>-0.771 (0.408)</td>
<td>0.05</td>
</tr>
<tr>
<td>R²</td>
<td>0.65</td>
<td></td>
<td></td>
<td>0.6</td>
</tr>
<tr>
<td>AIC</td>
<td>32.2</td>
<td></td>
<td></td>
<td>25.4</td>
</tr>
<tr>
<td>R² adj</td>
<td>0.6</td>
<td></td>
<td></td>
<td>0.55</td>
</tr>
<tr>
<td>R² adj</td>
<td>32.2</td>
<td></td>
<td></td>
<td>25.4</td>
</tr>
</tbody>
</table>

Table 5. Parameter and SE estimates of multiple imputation data sets (k = 10)

<table>
<thead>
<tr>
<th>Model</th>
<th>Parameter (SE)</th>
<th>OLS: p</th>
<th>GLM: log link: p</th>
</tr>
</thead>
<tbody>
<tr>
<td>del RBC 2,3-DPG</td>
<td>0.047 (0.021)</td>
<td>0.03</td>
<td>0.052 (0.024)</td>
</tr>
<tr>
<td>del pH</td>
<td>-2.048 (0.308)</td>
<td>0.0001</td>
<td>-2.720 (0.483)</td>
</tr>
<tr>
<td>RTP</td>
<td>0.914 (0.266)</td>
<td>0.001</td>
<td>0.656 (0.296)</td>
</tr>
<tr>
<td>aminophylline</td>
<td>0.687 (0.229)</td>
<td>0.003</td>
<td>0.481 (0.286)</td>
</tr>
<tr>
<td>amin_rtp</td>
<td>-0.847 (0.181)</td>
<td>0.04</td>
<td>-0.65 (0.335)</td>
</tr>
</tbody>
</table>

losses (presumed small), were not measured, and v) the effect of endogenous stress hormones such as insulin and adrenaline (which were not quantified). Potentially dissimilar patients were also combined in Group I, but this was thought reasonable as there were no differences in the set of mean values between the patients with exacerbation of COPD and pneumonia (Hotelling’s T² = 64.37, p < 0.89).

Red blood cell 2,3-diphosphoglycerate concentrations are decreased in metabolic acidosis, normal or increased in uncompensated respiratory disease and increased in respiratory alkalosis. However, such concentration changes are time dependent and, in normal subjects at least, begin at > 4 hr after initiation of extracellular pH change and are maximal between 24 to 48 hr. Thus, where rapid changes of arterial pH occur, as in the treatment of acute respiratory failure, the so-called “characteristic” changes in red blood cell 2,3-diphosphoglycerate may not necessarily be found.

In the current study, T₀ 2,3-diphosphoglycerate for all patients (13.5 ± 3.3 umol/gHb) was not raised above the reference range nor significantly different from previously reported levels in critically ill ventilated patients (14.5 ± 1.1 umol/gHb; p > 0.2). There was no significant T₀ or Δ 2,3-diphosphoglycerate difference between the three diagnostic groups and the overall Δ 2,3-diphosphoglycerate was non-significant. Similarly, there was no treatment-effect of ventilation nor ventilation-diagnostic group interaction for Δ 2,3-diphosphoglycerate (p = 0.86 and 0.69 respectively). Our results were thus in contrast to the study of Agusti et al., who noted higher levels of 2,3-diphosphoglycerate at 24 hr post-admission in ventilated COPD patients compared with those not ventilated. In our study the T₂₄ 2,3-diphosphoglycerate difference in Group I, ventilated vs non-ventilated was non-significant at 1.1 ± 1.0 (SE) umol/gHb (p = 0.31), although there was no difference between the T₂₄ 2,3-diphosphoglycerate levels in ventilated patients between the Augusti study and our study (16.1 ± 3.3 vs 14.93 ± 3.1 umol/gHb, p>0.3). Such a contrast may indicate different treatment regimens and/or patient characteristics.

George et al. suggested that under conditions of extreme (to tetany) hyperventilation a major portion of the inorganic phosphate lost from the serum may be accounted for as phosphate esters within the erythro-
ocytes with 2,3-diphosphoglycerate representing approxi-
mately 50% of the total change in phosphate ester. Al-
though the Δ 2,3-diphosphoglycerate was an independent

predictor in the current series, no information was available
regarding other red cell esters. Moreover, as the
24 hr Δ pH was modest at 0.10 ± 0.14, a large Δ 2,3-
diphosphoglycerate may not have been expected (and
was not found) by virtue of arterial pH change alone.
Thus, under the acute conditions of this study, Δ 2,3-
diphosphoglycerate may have been a confounder or
surrogate and not a direct index of intracellular phosphate shift, as, for example, a change in muscle phosphate concentration.²

Renal threshold phosphate concentration, which
reflects the set-point of renal phosphate reabsorption as
a function of both plasma phosphate concentration and
glomerular filtration rate,⁵⁵,⁵⁶ was depressed below the
lower reference range limit in Groups I and II. This
previously reflected the prescription of threshold
lowering agents in the therapy of acute respiratory
failure (e.g. methylxanthine derivatives, corticosteroids,
loop diuretics and sympathomimetics).²⁹,⁵⁷ For those
patients with renal threshold phosphate below the lower
limit of normal (< 0.8 mmol/L, n = 34), there was a
statistically significant difference between the threshold
of those hypophosphataemic at T₂₄ (n = 13) compared
with those who were not (n = 13, 0.43 ± 0.05 vs n = 21,
0.56 ± 0.14 mmol/L respectively; one-sided t-test, p =
0.006). Renal threshold phosphate concentration values
must also be interpreted with some caution, being
nomogram derived and potentially unreliable when
glomerular filtration rate is < 50 mL/min. Five patients
in the cohort had plasma creatinine levels (T₂₄) > 0.2
mmol/L.

At T₀ the urine phosphate concentration was 18.3 ±
17.1 mmol/L (range 0.2 - 83 mmol/L) and the 24 hr
excretion was 21.8 ± 14.0 mmol (range 1.1 - 57.0 mmol
/24 hr), which was in the lower range of our normal
reference range of 16 - 48 mmol. These “low” 24 hr
excretion values must be interpreted in the context of no
phosphate supplementation, although in trauma cases,
where in the unsupplemented condition, mean urine
phosphate losses were 29 ± 16 (SEM) mmol/24 hr,
supplementation was reported not to produce a
significant difference in phosphate excretion.⁵⁸ That
there was no urinary phosphate loss above “normal”
over the first 24 hr, in the presence of a decreasing
plasma phosphate concentration and a low renal thresh-
old phosphate concentration (0.76 mmol/L, 95%
frequency interval 0.65 - 0.86), would suggest: i) pre-
admission urinary phosphate loss and subsequent
(inappropriate) renal phosphate excretion under the
influence of phosphaturic agents and/or ii) body
compartment redistribution of phosphate.⁶

A considerable literature has addressed the appro-
priate analytic form of “change”. Initial analysis was not
unreasonably directed at finding a measure of change
that was independent of the initial (T₀) phosphate value.
Plots of candidate measures against both initial and
average phosphate, as recommended by various
authors,⁶,⁶⁰ were used to overcome the intrinsic
mathematical relationship involved in analysing raw
change variables; in particular, the simple difference
(T₂₄ - T₀). In this study, the measure adopted as the
dependent variable was the log ratio (log T₂₄/T₀
phosphate) which, being normally distributed, was
considered the most appropriate dependent variable for
linear regression. Hayes,²⁰ reviewing measures to
mathematically adjust for the potential effects of
regression to the mean, found Blomqvist’s adjustment²⁹
the most robust. In the current study the “effect” of
regression to the mean was to inflate by 25% the
coefficient for the regression relation, phosphate
change versus initial phosphate. An alternate analysis
could have considered T₂₄ phosphate as the dependent
regression variable, with T₀ phosphate as baseline, in an
ANCOVA analysis.⁵⁹ Such a strategy would, however,
have yielded the same analytic results as the use of
phosphate change as the dependent variable.⁶⁰ Baseline
corrections have a significant impact when the
correlation, “baseline” vs “current value”, is > 0.5.⁶¹ In
the current study, the correlation T₂₄/T₀ phosphate was
0.26.

In the presence of missing values, multivariable
analysis is usually accompanied by complete-case
analysis. That is, only complete observations are consid-
ered across variables, resulting in a decrease in the total
n and potential bias and/or loss of efficiency in estima-
tion. Recent recommendations on the conduct of multi-
variable analysis ⁶² have been unusually silent on
appropriate statistical procedures to deal with missing
values. The Little test for MCAR was non-significant in
this data set, suggesting that there would be minimal
bias in the parameter estimates from conventional
analysis and such was generally found (Tables 4 and 5).
Thus effective reduction of observation number to n =
46 in variable selection and model construction in the
initial data set appeared to relatively robust to “missingness”. That this may not be the case in other
data sets is, of course, an empirical question.

The three variables which were demonstrated to
predict log ratio phosphate were consistent from the
physiological viewpoint. The full model (all predictors
considered) had an R² of 0.68, but an adjusted R² of
only 0.36, suggesting that a more parsimonious model
was appropriate. The OLS model used a log-
transformed dependent variable (log ratio T₂₄/T₂₄
phosphate); fitted values and parameter estimates were in
terms of the log response (the geometric mean). Natural log differences \(\log \left(\frac{T_{24} \text{phosphate}}{T_0 \text{phosphate}} \right) \) correspond to fractional differences on the original scale; that is, the expected value will change by \(100 \exp(\beta) - 1 \)% for each 1-unit change in the independent variable \(x_j \) (\(\beta \) being the appropriate regression coefficient), regardless of whether \(x_j \) is continuous or dichotomous. A particular advantage of the GLM log-link model is that it provides estimates of the (exponential) conditional mean function (log response \(T_{24}/T_0 \) phosphate). The GLM log-link models the predictor \(x_j \), rather than the response, to linearise the relationship between response and predictors. That is, if we consider a transformation (say, logarithmic) \(g \), then the expectation \(E[g(Y)] \) of classic linear model has the form:

\[
E[g(Y)] = a + x \beta
\]

whereas the GLM has the form:

\[
g(E[Y]) = a + x \beta
\]

Thus parameters are equal to the logs of arithmetic means and their ratios (the ratios being for either groups defined by discrete predictors, in this case “aminophylline, yes/no”, or changes in response to a unit increase in a continuous predictor). The original arithmetic means and ratios are given by the exponential form \(\text{Table 4; GLM: } e^\text{form} \). In this sense, the GLM log-link model provides more convenient and intuitive estimates than the traditional log-transformed OLS.

Conclusions
Over the first 24 hr following admission to the ICU, critically ill patients with acute respiratory failure experienced a significant decline in plasma phosphate. At 24 hr, 26% of patients were hypophosphatemia, but this was severe in 4% only. The decline in phosphate was attended by a lowered renal threshold phosphate concentration, presumably multifactorial. Admission red blood cell concentrations of 2,3-diphosphoglycerate were not elevated beyond reference limits and the observed 24 hr increment was non-significant. Explanation of observed changes in phosphate levels over time reflected key underlying physiologic variables, albeit these were modified by certain treatment factors.

Modern statistical techniques, for example the bootstrap, data-augmentation and generalised linear models, are able to supplement traditional approaches to multivariable prediction. The effect of regression to the mean may be quantified, missing values are able to be managed appropriately, modelling of skewed variables may be more effectively accomplished and model uncertainty, in its various forms, may be quantified.

Received: 7 March 2002
Accepted: 14 May 2002

REFERENCES

60. Senn SJ. Methods for assessing difference between groups in change when initial measurements is subject to intra-individual variation. Stat Med 1994;13:2280-2283.