Interpreting CSF Lactic Acidosis: Effect of Erythrocytes and Air Exposure

B. VENKATESH*, T. J. MORGAN†, R. J. BOOTS‡, J. HALL‡, D. SIEBERT§

*University of Queensland, Department of Intensive Care, Princess Alexandra & Wesley Hospitals, QUEENSLAND
†Department of Intensive Care, Mater Misericordiae Hospitals, QUEENSLAND
‡Department of Intensive Care, Royal Brisbane Hospital, Herston, QUEENSLAND
§Department of Medical Microbiology, Royal Brisbane Hospital, Herston, QUEENSLAND

ABSTRACT

Objective: Elevated cerebrospinal fluid (CSF) lactate concentrations in neurotrauma and subarachnoid haemorrhage are associated with a poor prognosis. However, in blood-stained CSF, elevated lactate levels may arise from red cell metabolism, even without ischaemia, potentially reducing specificity. This study was undertaken to quantify the erythrocyte contribution to CSF lactate measurements, with and without, exposure to room air.

Methods: Blood was added to CSF to achieve three different red cell concentrations. The CSF was then exposed at 37°C to either room air or 5% CO₂ and 95% oxygen. Vancomycin and gentamycin were added to inhibit bacterial growth. Lactate concentrations and red cell concentrations were measured prior to the addition of blood and 10 minutes, 6 hours and 24 hours later. CSF without the addition of blood was used as a control.

Results: In the control specimens there were no increases in CSF lactate concentrations over time, either in air or CO₂, whereas all specimens with blood added demonstrated significant increases in lactate at 6 and 24 hours (P < 0.01). The lactate increases in both air and CO₂ were correlated directly with red cell counts (R² = 0.62 to 0.87). At all red cell concentrations, the mean lactate increase was greater in air.

Conclusions: Red cells in CSF cause significant increases in lactate concentrations, more so when exposed to air. This should be considered when interpreting lactate in blood stained CSF. Blood-stained CSF specimens for lactate assay should be collected directly from an external ventricular drain rather than a reservoir bag. (Critical Care and Resuscitation 2003; 5: 177-181)

Key words: Cerebrospinal fluid, lactate, alkalosis, drain, haemorrhagic, ventricular

Cerebrospinal fluid (CSF) lactic acidosis is an important predictor of outcome in a variety of neurological and neurosurgical diseases including head injury, and subarachnoid haemorrhage. In these conditions elevated CSF lactate concentrations have been regarded as arising primarily from central nervous system anaerobic metabolism. The normal lactate concentration in the CSF is about 1 - 1.5 mmol/L. Nearly all of this arises from cerebral metabolism, since normal CSF is relatively acellular with minimal intrinsic metabolic activity. As lactate is an ionized molecule, diffusion across the blood brain barrier in health is slow.

Elevations in the measured CSF lactate concentration may result from a number of intrinsic and extrinsic processes other than anaerobic metabolism. For example, in subarachnoid haemorrhage, secondary to trauma or aneurysmal rupture, rises in CSF lactate may result from ongoing erythrocyte metabolism in the CSF. Outside the CSF, erythrocyte glycolysis contributes substantially to the total body pool of lactate and this metabolic activity may continue unimpeded in the CSF compartment. Moreover, the frequency and extent of CSF recirculation (normally 4
- 5 times/day) may be reduced in disease states. The combination of continued erythrocyte production and impaired lactate clearance from the CSF may elevate CSF lactate even in the absence of cerebral anaerobic metabolism. Froman et al have examined the impact of erythrocyte contamination on CSF lactate concentrations, although the “mock CSF” preparation they used may have biased their results due to the short duration of observations, specimen haemolysis and testing using a single concentration of haemoglobin.

Another possible influence on CSF lactate measurements is the mode of CSF sampling. In many intensive care units, critically ill patients with raised intracranial pressure (ICP) undergo placement of an external ventricular drainage system to monitor the ICP and to sample CSF. An external ventricular drainage system consists of a ventricular catheter connected via sterile tubing to a Y-piece, one limb of which is used to measure the ICP while the other drains into a reservoir bag via a burette. Blood stained which is used to measure the ICP while the other is used to count by the Neubauer haemocytometer method. The individual performing the cell count was blinded to the expected red cell concentration.

For cell count analysis, 2 mL of CSF was collected in a sterile chamber and examined in acrylic graduated counting chambers (“Fast-read 102 New Grid”), which are used to count cells by the Neubauer haemocytometer method. The individual performing the cell count was blinded to the expected red cell concentration.

Two mL samples of CSF were collected anaerobically from each incubating chamber and analysed in triplicate for pH, PCO₂ and lactate concentrations in a blood gas analyser (ABL 625, Radiometer, Copenhagen). This analyser has previously been validated for measurement of PCO₂ and PO₂ in CSF. In preparation for this study, we also determined the bias and precision for lactate measurement in non-blood fluids, and found it to be –0.2 ± 0.5 mmol/L (range 1 - 10mmol/L).

All specimens were plated on solid media, and simultaneously cultured in broth for 24 hours followed by solid media subculture if broth-positive.

Data Analysis

Data from the CSF exposed to room air and carbon dioxide are referred to as the ‘air arm’ and the ‘CO₂ arm’ of the study respectively. Where appropriate, data are presented as mean ± SD. Change in lactate from baseline was termed ‘Δlactate’. Analysis of variance of repeated measures, accompanied where indicated by paired t-tests, was used to compare mean Δlactate values under different environmental conditions over the 4 time points. The relationship between measured CSF erythrocyte count and Δlactate was examined by linear regression. A p value of < 0.05 (two-tailed) was taken as significant.
RESULTS

Actual red cell counts ranged from 100 to 512 x 10^9/L. The overall mean pH in the ‘air arms’ exceeded that in the ‘CO₂ arms’ (7.72 ± 0.01 vs 7.28 ± 0.01, p < 0.001). The difference was presumably as a result of differing CO₂ tensions (14 ± 4 mmHg vs 38 ± 11 mmHg, p < 0.001). Glucose concentrations for all specimens ranged from 2.8 mmol/L to 5.2 mmol/L.

Mean baseline lactate concentrations in the specimens with blood added ranged from 1.3 ± 0 mmol/L to 2.1 ± 0 mmol/L. In control specimens, there was no increase in CSF lactate concentrations over time, either in the air arm or the CO₂ arm. All specimens with blood demonstrated a statistically significant increase in lactate at Time points 3 and 4 (Figures 1 and 2, p < 0.01). Lactate values in both air and CO₂ at Time points 3 and 4 were correlated directly with corresponding measured red cell counts (R² = 0.62 to 0.87).

At all red cell concentrations the mean Δlactate was greater in the air arm, both at 6 hours and at 24 hours (Time points 3 and 4, Table 1). Some mixed bacterial growth was identified in both control and CSF samples with blood added. The colony count appeared similar in all samples, although direct quantification was not performed.

DISCUSSION

The principal finding was that blood contamination elevates CSF lactate concentrations over time, at a rate directly correlated with the degree of contamination and increased by pre-analytic CO₂ loss. Presumably erythrocytic glycolysis was the predominant source of CSF lactate production, as the erythrocyte produces about 300 mmol of lactate per day by glycolysis. However, alternative mechanisms may be responsible.

Platelet metabolism is negligible, and unlikely to elevate CSF lactate. On the other hand, leukocytes are known to generate lactate and on a weight for weight basis are the most potent source of lactate in the normal human. However because of small numbers, their contribution to the total lactate pool is negligible. The mean resting leucocyte production of lactate is 0.2 mmol/0.02 cell/min. At this level of metabolic activity, based on the expected numbers of CSF white cells introduced with the addition of blood, the lactate generated would have been approximately 35 - 125 micromoles per day, resulting in concentrations 100 x lower than those detected in the present study.

Haemolysis, rather than glycolysis, is unlikely to have caused an increase in CSF lactate, as the intra-erythrocytic lactate content in 1 mL of red cells is 0.9 micromoles. Therefore the maximum increase in CSF lactate due to haemolysis (at the highest introduced red cell concentration) would have been 0.04 mmol/L, and substantially less than that measured. A final potential source of lactate in this study is bacterial growth and metabolism. Bacterial growth was identified in both control and blood CSF samples, and the colony count appeared to be similar in all samples. However, lactate levels rose only in the blood stained samples, suggesting that blood contamination was the dominant stimulus.

Froman et al. documented erythrocytic lactate production in a mock CSF solution. However, bacterial contamination was a more prominent influence than in our experiment, and no data were presented on serial measurements of lactate. Shannon and coworkers confirmed CSF erythrocyte lactate production in a canine model. However, they injected blood with a haematocrit as high as 70%, and did not replicate physiological conditions. Moreover serial measurements were curtailed at 6 hours. Granholm examined the effect of blood admixture with CSF on the lactate/pyruvate ratio and confirmed that despite elevations in lactate and pyruvate, there was no change in the ratio. However, in that study, measures to limit microbiological contamination of the samples were not undertaken, and no data on bacterial growth were presented. Furthermore, neither the effect of storage nor the effect of CO₂ loss on CSF lactate production were studied, both of which are important considerat-

Table 1. Δlactate values (mmol/L) at various red cell concentrations in CSF exposed to air or CO₂

<table>
<thead>
<tr>
<th>RBC count</th>
<th>Time point 2</th>
<th>Time point 3</th>
<th>Time point 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Air</td>
<td>CO₂</td>
<td>Air</td>
</tr>
<tr>
<td>120 x 10⁹/L</td>
<td>0.02 ± 0.04</td>
<td>0</td>
<td>0.4 ± 0*</td>
</tr>
<tr>
<td>200 x 10⁹/L</td>
<td>0.1 ± 0.1</td>
<td>0</td>
<td>0.6 ± 0.1*</td>
</tr>
<tr>
<td>440 x 10⁹/L</td>
<td>0</td>
<td>0.02 ± 0.04</td>
<td>0.8 ± 0.1*</td>
</tr>
</tbody>
</table>

RBC = red blood cell, Time point 1 = before addition of RBC, Time point 2 = 10 minutes following addition of RBC, Time point 3 = 6 hours following addition of RBC, Time point 4 = 24 hours following addition of RBC

*Δlactate greater in air than CO₂ (P < 0.05)
ions when examining samples from ventricular drains or reservoir bags.

Clinical implications

Before applying the results to clinical practice, it is important to put these data into perspective. Lactate production by erythrocytes is influenced by ambient glucose concentrations. Diffusion across the blood brain barrier in vivo maintains equilibration with plasma glucose, whereas in our *in vitro* model no diffusive source of glucose was available, potentially limiting the rise in lactate. In fact there was a tendency for glucose to decrease over time, with the lowest measured glucose concentration being 2.58 mmol/L at Time point 4. As a result, our data may underestimate the lactate increment occurring *in vivo* on introduction of erythrocytes into the CSF.

There is also a potential for gravitational red cell sludging in vivo, with pockets of high concentrations of red cells. Sampling such an area might reveal higher lactate concentrations. In all other respects, care was taken in our study to simulate physiological conditions. The erythrocyte concentrations mimicked those seen in patients with subarachnoid haemorrhage and the temperature was maintained at 37°C. Furthermore, the ‘air arm’ of the study simulated atmospheric conditions which would prevail in the reservoir bag of an external ventricular drainage system.

An elevation in brain extracellular lactate concentrations have been reported to be a marker of ischaemia and secondary brain injury and prognosticate a poor outcome. It might therefore be logical to titrate therapies aimed at reducing cerebral metabolism (such as induced hypothermia and pentobarbital...
using brain extracellular lactate to monitor the
effect. Although our data relate to lactate measure-
ments in CSF specifically rather than extracellular
fluid, the results do have implications for lactate
analyses on brain extracellular fluid examined via
microdialysis. Both techniques have potential for
blood contamination and exposure to air.

Data from our study suggest that the erythrocytic
contribution to CSF lactate becomes significant at 6
hours, with progressive increases up to 24 hours later.
The study has also shown that pre-analytic exposure of
CSF to air doubles the lactate production, presumably
due to CO₂ loss. This means that lactate concentrations
in blood-stained CSF collected fresh from an external
ventricular drain are likely to reflect in vivo levels
more accurately than CSF collected from reservoirs.
These caveats need to be considered when interpreting
lactate concentrations in haemorrhagic CSF.

Received: 14 August 2003
Accepted: 20 August 2003

REFERENCES

1. Rabow L, DeSalles AF, Becker DP, et al. CSF brain
creatine kinase levels and lactic acidosis in severe head
significance of ventricular CSF lactic acidosis in severe
3. De Salles AA, Muizelaar JP, Young HF. Hyperglycemia, cerebrospinal fluid lactic acidosis, and
cerebral blood flow in severely head-injured patients.
O. Time course of CSF lactate level in subarachnoid
haemorrhage. Correlation with clinical grading and
SC, Muizelaar JP, et al. Traumatic brain tissue
acidosis: experimental and clinical studies. Acta
6. Watson MA, Scott MG. Clinical utility of biochemical
analysis of cerebrospinal fluid. Clin Chem
1995;41:343-360.
8. Williams MA, Razumovsky A. Cerebrospinal fluid
circulation, cerebral edema, and intracranial pressure.
9. Froman C, Smith AC. Metabolic acidosis of the
cerebrospinal fluid associated with subarachnoid
1980;25:33-68.
11. Kjeldsberg C, Knight J. Body Fluids: In: Laboratory
examination of amniotic, cerebrospinal, seminal,
ersus & synovial fluids: a textbook atlas. 3rd ed.
12. Venkatesh B, Boots RJ. Carbon dioxide and oxygen
partial pressure measurements in the cerebrospinal
fluid in a conventional blood gas analyzer: analysis of
14. Rowell LB, Kraning KK, 2nd, Evans TO, Kennedy
JW, Blackmon JR, Kusumi F. Splanchnic removal of
lactate and pyruvate during prolonged exercise in man.
15. Yudkin J, Cohen RD. The contribution of the kidney to
the removal of a lactic acid load under normal and
acidotic conditions in the conscious rat. Clin Sci Mol
Malatiss WJ. Leukocyte glycolysis and lactate output
in animal sepsis and ex vivo human blood. Metabolism
E, Lichtman M, Coller B, Kipps T, editors. Williams
368.
18. Shannon DC, Shore N, Kazemi H. Acid-base balance
in hemorrhagic cerebrospinal fluid. Neurology
Continuous monitoring of cerebrospinal fluid acid-
base balance and oxygen metabolism in patients with
severe head injury: Pathophysiology and treatments for
cerebral acidosis and ischemia. Acta Neurochir Suppl
(Wien) 1999;75:49-55.