Ethylene glycol is commonly found in radiator coolant/antifreeze in varying concentrations. It is readily available within the community and, particularly in Europe and America, has been used in suicide attempts.1-5 Accidental swallowing of ethylene glycol by children has also occurred, with the bright colouring of the coolant mixture likely proving attractive.2,4,5

Ethylene glycol has a sweet taste and is rapidly absorbed via the gastrointestinal mucosa.2,5-7 Initial symptoms of intoxication are similar to those caused by other alcohols, but if untreated, the intoxication can lead to coma, renal failure and severe metabolic acidosis, which, without intervention, almost invariably ends in death.1,2,6,8-11

Treatment for ethylene glycol poisoning involves the blockade of metabolic enzymes (specifically alcohol dehydrogenase [ADH]) with fomepizole or saturation of the enzymes with preferentially metabolised compounds (eg, ethanol).1,2,4,11-13 These treatments are usually administered parenterally, although ethanol may also be given enterally.2,11

We report a case of severe ethylene glycol poisoning that was treated with enteral ethanol with good effect.

Clinical record
A 23-year-old male tourist was found unconscious in his motel room by cleaning staff and brought to the emergency department by ambulance. His room contained broken light bulbs (which had been used to cut his wrists), exposed electrical wires, and a 4 L bottle of antifreeze (60% ethylene glycol) which had about 1.5 L remaining inside it. The patient’s vital signs on arrival at the emergency department are shown in Table 1. Initial examination revealed a Glasgow Coma Score of 3, Kussmaul respirations, equal but non-reactive 3 mm pupils, evidence of urinary incontinence, superficial lacerations to both wrists, and no obvious evidence of electrocution (such as entry or exit burns). Physical examination was otherwise unremarkable. An electrocardiogram showed normal sinus rhythm. The patient was intubated and ventilated on arrival. Results of arterial blood gas analysis, full blood count, coagulation profile and serum biochemistry are summarised in Table 2. Arterial blood gas analysis revealed a high-anion-gap metabolic acidosis, with an initial pH of 6.83. This was consistent with the suspected diagnosis of ethylene glycol poisoning, and the patient was transferred to the intensive care unit for ongoing treatment. Serum ethylene glycol levels were not measured, as samples could not be processed locally, which meant that results would not be available in time to be of any clinical utility.

As the patient was an overseas tourist and travelling alone, there was no available medical history or immediate contacts from which to gather further information. Family members, who were contacted as soon as possible by police, confirmed that the man had no medical history relevant to the current episode.

In the ICU, the patient was commenced on continuous venovenous haemodiafiltration (CVVHDF) and a 10% ethanol infusion (initial loading dose, 2.5 mL/kg; maintenance dose 1–4 mL/kg/h to maintain serum ethanol level 26–39 mmol/L). Sedation was initially maintained with propofol, but switched to morphine and midazolam once the patient was settled in the ICU. Repeat arterial blood gas analysis after 3 hours demonstrated a worsening
acidosis (Table 2), so sodium bicarbonate was given. Blood pressure fell to 70 mmHg systolic and a noradrenaline infusion was commenced. By the first evening in the ICU, pharmacy supplies of 100% ethanol for infusion had been depleted, so oral ethanol (in this case, vodka) was given via a nasojejunal tube, with the aim of producing similar serum ethanol levels to those obtained via intravenous infusion.

Although the patient's condition stabilised within 24 hours, vasopressors were still required to maintain mean arterial pressures above 70 mmHg. Dialysis was complicated by frequent filter clotting despite adequate vascular access, requiring full systemic anticoagulation. Purulent endotracheal secretions were noted on Day 2 in the ICU and ticarcillin/clavulanic acid 3.1 g 8-hourly was commenced (a sputum sample was later positive for sensitive *Staphylococcus aureus*). A computed tomography (CT) scan of the chest demonstrated bibasal lung consolidation.

CVVHDF was continued (with neutral fluid balance) and biochemical parameters were maintained at normal limits. Feeding was commenced via a nasojejunal tube on Day 2. The patient was weaned from sedation without any increase in level of consciousness, so a CT brain scan was performed. This revealed hypodensities in bilateral anterior and posterior limbs of the internal capsule and in the region of the external capsule, extending to the medial temporal lobes adjacent to the temporal horns of the lateral ventricles, with sparing of the grey matter.

Generalised oedema was noted on Day 3 with associated anuria, so CVVHDF dosing was modified to obtain a negative fluid balance. Ethanol was ceased on Day 3, as the arterial blood pH had normalised and stabilised. Gradually the patient's condition improved, he was weaned from vasopressors, and was extubated on Day 7. On the following day, CVVHDF was switched to intermittent haemodialysis, which continued for a further 6 days. The patient was then assessed by the mental health team and diagnosed as having a “psychotic fugue”, likely as a result of preceding alcohol and drug abuse. On Day 13, he was transferred to the medical ward, where he returned to his previous level of function and health, with only minimal residual renal dysfunction (Table 2). He was discharged from hospital on Day 22. To prevent further recurrences of similar episodes, he was advised by the mental health team to abstain from alcohol and drug-taking and to pursue further counselling as necessary once he returned home. He returned home with his family, and was referred for ongoing renal follow-up by a local specialist.

Table 2. Blood test results during patient's hospital stay

<table>
<thead>
<tr>
<th>Presentation</th>
<th>3 hrs</th>
<th>12 hrs</th>
<th>18 hrs</th>
<th>Day 2</th>
<th>Day 3</th>
<th>Day 4</th>
<th>Day 5</th>
<th>Day 6</th>
<th>Day 7</th>
<th>Day 13</th>
<th>Day 22</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>6.83</td>
<td>6.68</td>
<td>7.21</td>
<td>7.44</td>
<td>7.46</td>
<td>7.37</td>
<td>7.52</td>
<td>7.50</td>
<td>7.50</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>pCO₂ (mmHg)</td>
<td>20</td>
<td>37</td>
<td>36</td>
<td>27</td>
<td>30</td>
<td>49</td>
<td>42</td>
<td>47</td>
<td>46</td>
<td>43</td>
<td>—</td>
</tr>
<tr>
<td>pO₂ (mmHg)</td>
<td>477</td>
<td>380</td>
<td>227</td>
<td>233</td>
<td>156</td>
<td>81</td>
<td>96</td>
<td>70</td>
<td>92</td>
<td>70</td>
<td>—</td>
</tr>
<tr>
<td>FiO₂</td>
<td>1.0</td>
<td>0.6</td>
<td>0.4</td>
<td>0.35</td>
<td>0.3</td>
<td>0.5</td>
<td>0.45</td>
<td>0.5</td>
<td>0.55</td>
<td>0.45</td>
<td>—</td>
</tr>
<tr>
<td>HCO₃ mmol/L</td>
<td>3</td>
<td>4</td>
<td>14</td>
<td>18</td>
<td>21</td>
<td>28</td>
<td>34</td>
<td>36</td>
<td>36</td>
<td>36</td>
<td>29</td>
</tr>
<tr>
<td>Base excess (mmol/L)</td>
<td>—</td>
<td>—</td>
<td>—13.0</td>
<td>—4.4</td>
<td>—2.0</td>
<td>2.9</td>
<td>9.9</td>
<td>11.8</td>
<td>11.9</td>
<td>11.9</td>
<td>—</td>
</tr>
<tr>
<td>Lactate (mmol/L)</td>
<td>—</td>
<td>3.9</td>
<td>5.1</td>
<td>5.4</td>
<td>2.9</td>
<td>5.0</td>
<td>2.9</td>
<td>2.2</td>
<td>2.0</td>
<td>1.5</td>
<td>—</td>
</tr>
<tr>
<td>Glucose (mmol/L)</td>
<td>16.3</td>
<td>24.6</td>
<td>7.1</td>
<td>5.2</td>
<td>7.6</td>
<td>7.0</td>
<td>7.4</td>
<td>7.7</td>
<td>6.6</td>
<td>6.5</td>
<td>—</td>
</tr>
<tr>
<td>Anion gap (mmol/L)</td>
<td>31</td>
<td>—</td>
<td>—</td>
<td>17</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>7</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>Sodium (mmol/L)</td>
<td>142</td>
<td>—</td>
<td>—</td>
<td>141</td>
<td>133</td>
<td>135</td>
<td>136</td>
<td>138</td>
<td>138</td>
<td>135</td>
<td>135</td>
</tr>
<tr>
<td>Potassium (mmol/L)</td>
<td>6.7</td>
<td>—</td>
<td>—</td>
<td>4.0</td>
<td>3.4</td>
<td>4.7</td>
<td>3.9</td>
<td>3.4</td>
<td>4.6</td>
<td>4.5</td>
<td>4.3</td>
</tr>
<tr>
<td>Urea (mmol/L)</td>
<td>2.4</td>
<td>—</td>
<td>—</td>
<td>3.4</td>
<td>5.7</td>
<td>5.8</td>
<td>6.7</td>
<td>6.5</td>
<td>6.6</td>
<td>8.9</td>
<td>11.4</td>
</tr>
<tr>
<td>Creatinine (μmol/L)</td>
<td>129</td>
<td>—</td>
<td>—</td>
<td>159</td>
<td>245</td>
<td>251</td>
<td>207</td>
<td>191</td>
<td>188</td>
<td>253</td>
<td>333</td>
</tr>
<tr>
<td>Corrected Ca (mmol/L)</td>
<td>2.14</td>
<td>—</td>
<td>—</td>
<td>2.40</td>
<td>2.50</td>
<td>2.52</td>
<td>2.65</td>
<td>2.66</td>
<td>2.48</td>
<td>2.50</td>
<td>2.26</td>
</tr>
<tr>
<td>Haemoglobin (g/L)</td>
<td>167</td>
<td>—</td>
<td>—</td>
<td>113</td>
<td>81</td>
<td>72</td>
<td>85</td>
<td>79</td>
<td>79</td>
<td>70</td>
<td>86</td>
</tr>
<tr>
<td>WCC (× 10⁹/L)</td>
<td>33.1</td>
<td>—</td>
<td>—</td>
<td>26.7</td>
<td>11.9</td>
<td>7.7</td>
<td>12.0</td>
<td>15.9</td>
<td>16.4</td>
<td>14.1</td>
<td>10.7</td>
</tr>
<tr>
<td>Platelets (× 10⁹/L)</td>
<td>408</td>
<td>—</td>
<td>—</td>
<td>196</td>
<td>63</td>
<td>59</td>
<td>71</td>
<td>71</td>
<td>100</td>
<td>122</td>
<td>151</td>
</tr>
<tr>
<td>INR</td>
<td>1.2</td>
<td>1.9</td>
<td>3.6</td>
<td>1.6</td>
<td>1.1</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.1</td>
</tr>
<tr>
<td>APTT (seconds)</td>
<td>33</td>
<td>>200</td>
<td>>200</td>
<td>>200</td>
<td>34</td>
<td>34</td>
<td>35</td>
<td>40</td>
<td>48</td>
<td>48</td>
<td>35</td>
</tr>
<tr>
<td>Ethanol (mmol/L)</td>
<td><3</td>
<td>13</td>
<td>12</td>
<td>32</td>
<td>15</td>
<td><3</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
</tbody>
</table>

APTT = activated partial thromboplastin time. FiO₂ = fraction of inspired oxygen. INR = international normalised ratio. WCC = white cell count.
Discussion

Our patient was fortunate to have a good outcome after severe ethylene glycol poisoning. Based on the concentration of ethylene glycol in the preparation that the patient ingested (60%), the maximum dose taken was 2.5 L (31.25 mL/kg), with the minimum lethal dose in adults being 100 mL (about 1.5 mL/kg) of 95% ethylene glycol.2,7,11,14 The patient's arterial blood pH (recorded as 6.68 at its lowest point) is one of the lowest survived, as recorded in the current literature.4,6,15-16 Such low pH values, which are often unsurvivable from other causes, appear normal for ethylene glycol poisoning,2,6 and although sometimes refractory to bicarbonate infusion, this often appears useful in the correction of acidosis.2,4,7-9,11,14 The higher survival rate may be due to the acidosis resulting from high glycolic acid levels after ingestion, rather than from metabolic dysfunction arising from a pathological process,2,4,7,8,11,15 although the classical physiological and clinical signs of acidosis are the same.

Ethylene glycol poisoning is characterised by an altered level of consciousness, renal failure, profound metabolic acidosis with an anion gap, and the presence of an osmolar gap.1-4,8,10 Onset of effects occurs within 4 to 12 hours after ingestion, and can be delayed by coingestion with other alcohols.2,7,8,11,17 Toxicity is not a direct result of ethylene glycol itself, but rather its metabolites, particularly glycolate and also oxalic acid, which complexes with serum calcium and deposits within organ tissues.1-3,5,6,8,11,17,18 The pathway of ethylene glycol metabolism is shown in Figure 1. Rate-limiting steps occur at ethylene glycol (ADH) and glycolate (lactate dehydrogenase), with resultant accumulation of these compounds. Glycoalddehyde is itself particularly toxic, resulting in cell death via increased oxidative stress, but is likely to have only limited effect in ethylene glycol toxicity, as it is rapidly converted to glycolate.2,4,7 Also, glyoxylate itself has limited toxicity, but is readily metabolised to other toxic organic acids (including oxalic acid).2,4,7,8 Glycolate is thought to cause most of the organ toxicity in ethylene glycol poisoning via direct cellular toxicity.2,4 Progression of ethylene glycol metabolism also promotes lactate production from pyruvate, resulting in increasing acidosis.2,7 Binding of oxalic acid to calcium can reduce the serum calcium level, which may result in coagulopathy, myocyte dysfunction (including cardiac myocytes) and arrhythmias.2,7,11

Treatment of ethylene glycol poisoning, as with all toxicological emergencies, focuses first on airway protection, maintenance of adequate ventilation and circulation, and then on correction of underlying abnormalities.2,7,8,14 This centres around preventing formation and the elimination of toxic metabolites, and removal of any unmetabolised ethylene glycol, and is achieved largely through blockade of ADH and renal replacement therapies.1,2,5,7,8,11,14-19 Correction of any electrolyte and physiological abnormalities is also important, in order to maintain homeostasis as close to normal as possible. Activated charcoal administration is not useful in this context, due to rapid absorption of ethylene glycol via the gastrointestinal mucosa, but may be useful in suspected polypharmacy overdoses.2,7,8,11

ADH may be blocked either directly with the selective inhibitor fomepizole (4-methylpyrazole) or by the use of ethanol (which is preferentially metabolised over other alcohols, saturating the enzyme).2,8 Unfortunately, fomepizole is not available for routine use in Australia. Ethanol has been shown to be similarly effective, but it is often difficult to monitor and maintain adequate serum concentrations (particularly during dialysis).2,7,8,13 Also the requirement for large doses of intravenous ethanol can create issues of supply, as occurred in our case, necessitating the switch to oral ethanol. This can further increase the difficulty of

Figure 1. Pathway of ethylene glycol metabolism

![Diagram of ethylene glycol metabolism](image-url)

NAD = nicotinamide adenine dinucleotide. NADH = NAD (reduced).
maintaining adequate serum levels, due to variable pharma-
cokinetics.2,7,12 Ethanol should be given intravenously as a
10\% solution in 5\% dextrose, or orally as a roughly 40\%
solution (there is a decreased need for dilution of ethanol
when given via the enteral route). The initial intravenous
loading dose should be 7.6 mL/kg, followed by an infusion
of 1–2 mL/kg/h.2,7 These doses should be quartered for oral
administration (due to greater concentration of the oral
solution), and may need to be doubled from baseline (for
both intravenous and oral administration) during dialysis.
These doses should be used as a starting guide, with the
aim being maintenance of a serum ethanol level of 26–
39 mmol/L.2,7,8,11,12 Intravenous administration of ethanol is
the preferred route, as absorption is more variable in the
gut.2,8,11,12

Enteral ethanol absorption is poorly defined and depend-
ent on multiple factors. Most ethanol absorption occurs in
the stomach (20\%) and duodenum (80\%).20 There is
significant first-pass metabolism of enterally delivered etha-
nol before it is distributed throughout the body.2,20,21 This is
due mainly to its direct passage via the portal venous
system to the liver, but also due to the presence of ADH in
the gastric mucosa.12,20,21 The level of mucosal ADH is
dependent on race (higher in Caucasians), sex (higher in
males), and concomitant drug use (reduced with aspirin and
H\textsubscript{2} receptor antagonists). Mucosal metabolism of ethanol is
more pronounced with delayed gastric emptying, which
may be associated with diet (fatty meals), prokinetic drugs
(e.g., erythromycin) and critical illness. Such an effect is not
seen when ethanol is delivered directly to the duodenum or
beyond (as was the case in our patient).20,22 The first-pass
metabolism of ethanol has important ramifications for
serum and tissue levels of enterally absorbed ethanol,
resulting in lower levels than may be seen with intravenous
administration. However, in the case of ethylene glycol
poisoning, this difference may not be important, as the goal
of ethanol administration is to saturate hepatic ADH. This
may occur more rapidly via the enteral route, due to direct
portal delivery, although the significance of this difference is
likely small because of the low Michaelis constant (K_{m}) and
thus rapid saturation of hepatic ADH via either route of
administration.20,21

Other factors that influence the serum level of ethanol,
and thus the saturation of hepatic ADH, include its tissue
distribution, alternative routes of metabolism, and hepatic
blood flow.20,21 Ethanol metabolism does not necessarily
follow zero-order kinetics as traditionally thought, as it is
not solely metabolised by ADH. In chronic ethanol use,
induction of cytochrome P450 enzymes allows an alterna-
tive metabolic pathway with a much higher K_{m}, resulting in
far more rapid metabolism of ethanol and lower serum
levels.2,20,21 Furthermore, the distribution of ethanol
throughout the body is related to the amount of body
water present, and therefore is a factor of age, sex, and
lean body mass.20,21 This distribution and its resultant
equilibrium with circulating blood volume is not constant,
being altered by tissue perfusion, with rapid changes in
serum levels seen with alterations in peripheral tissue blood
flow.20 Also, blood flow in the splanchnic vessels may be
altered due to fasting state, exercise, and critical illness,
resulting in altered hepatic perfusion and ethanol metabo-
lism. In summary, delivery of enteral ethanol involves many
important considerations by the treating clinician. Ulti-
mately, intravenous ethanol administration is far simpler,
but when this is not available, enteral ethanol can be
substituted with good effect, as demonstrated in our case.
We could find no cases in the literature documenting the
use of this treatment modality.

It has been suggested that the use of vitamin supple-
ments may further aid in the conversion of toxic to non-
toxic metabolites in ethylene glycol poisoning. Thiamine
and magnesium may help in converting glyoxylate to
ketones; pyridoxine may help in converting glyoxylate to
glycine;2,7,8,11 and folate may reduce the conversion of
glyoxylate to formate.8,11 There are no data on their efficacy
in humans for this purpose, but as the risks associated with
their use are low, it is not unreasonable they be used.

The modality of renal replacement used is also debated,
but in ethylene glycol poisoning, neither continuous nor
intermittent haemodialysis seems to have any clear advan-
tage, unless the patient is haemodynamically unstable, in
which case continuous haemodialysis appears advanta-
geous.2–19 Suggested indications for renal replacement are:
serum ethylene glycol level > 4.03 mmol/L; arterial blood pH
< 7.25; deteriorating vital signs despite all other treatments;
and unexplained anion gap metabolic acidosis with a high
index of suspicion for ethylene glycol ingestion.2,7,8,11,14
Renal replacement should be continued until all ethylene
glycol is removed and the metabolic acidosis is
resolved.7,8,11,14

\textbf{Conclusion}

The severity of our patient’s acidosis and the treatment of
his ethylene glycol poisoning with enteral ethanol are the
most notable aspects of this case. It demonstrates that
good outcomes may be achieved with simple and readily
available therapies. We have also discussed the physiology
of ethylene glycol metabolism, current treatment aims and
therapies for such poisoning, and the pharmacokinetics and
clinical implications of enteral ethanol administration.
Although not a common poisoning in Australia, it is readily
treatable, with good outcomes. All critical care physicians
need to be mindful of ethylene glycol poisoning as a
possible cause of altered level of consciousness and be familiar with its clinical effects and treatment.

Author details

Adam L Holyoak, Registrar in Emergency Medicine and Intensive Care

Todd A Fraser, Director of Intensive Care

Pascal Gelperowicz, Emergency Medicine Specialist

1 Townsville Hospital, Townsville, QLD, Australia.

2 Mackay Base Hospital, Mackay, QLD, Australia.

3 Austin Hospital, Melbourne, VIC, Australia.

Correspondence: adam_holyoak@health.qld.gov.au

References

