Critical Care and Resuscitation

Volume 13 Number 4
December 2011

Severe sepsis remains the leading cause of intensive care unit mortality.1-3 Its haemodynamic hallmark4-12 is the presence of hypotension, inadequate tissue perfusion and hypoxia.13-15 Bolus fluid resuscitation is recommended as a primary therapeutic intervention to restore organ perfusion, and thereby preserve organ function.12,16-18 In addition, there is particular concern over decreased renal blood flow during sepsis, especially when the systemic venous pressure is low and urine output decreased. Bolus fluid resuscitation to restore renal blood flow in this setting is thus considered a fundamental therapeutic intervention.18 Unfortunately, it is unknown whether such fluid resuscitation improves perfusion of vital organs. It is also unknown whether such improvement is substantial and long lasting. Moreover, there is uncertainty regarding the best type of fluid to be used for such bolus resuscitation.

Normal (0.9%) saline (NS) is perhaps the most widely available and most commonly used agent for fluid resuscitation in severe sepsis.12-19 Hypertonic (3%) saline (HTS) has also been used for treatment of sepsis, mainly in experimental studies, with evidence of transiently improved systemic haemodynamics.20-23 However, the magnitude and duration of its effect is poorly understood, and the regional circulation effects and renal functional impact of HTS in sepsis remain unknown.

ABSTRACT

Background: Fluid resuscitation with saline in severe sepsis is controversial. Hypertonic (3%) saline (HTS) may be superior to normal (0.9%) saline (NS).

Objective: To compare the effects of HTS and NS on regional blood flow in sepsis.

Design: Randomised controlled crossover large animal study.

Setting: University physiology laboratory.

Subjects: Seven merino cross ewes.

Interventions: We implanted chronic flow probes around aorta, mesenteric, coronary and renal arteries. Sepsis was induced by the intravenous injection of 3 × 10^9 colony-forming units of live Escherichia coli. We randomised animals to three groups after onset of sepsis: observation (control), NS (1000 mL over 15 minutes) and HTS (300 mL over 15 minutes).

Main outcome measures: Continuously measured systemic haemodynamics, organ blood flows and markers of renal function for 210 minutes.

Results: In septic sheep, bolus resuscitation with HTS had similar systemic haemodynamic effects as NS and both increased cardiac output and mesenteric blood flow during the first hour compared with control (P < 0.05). However, this effect dissipated after 60 minutes. These effects were mirrored by effects on mesenteric and coronary blood flow. In contrast, renal blood flow was not changed by either HTS or NS. HTS transiently increased total and mesenteric oxygen delivery (P < 0.05), while NS transiently decreased total and renal oxygen delivery. Urine output and creatinine clearance decreased with sepsis and only transiently increased with NS (P < 0.05) but not HTS.

Conclusions: In gram-negative sepsis, bolus resuscitation with HTS and NS have similar and transient systemic and regional haemodynamic effects, but no effects on renal perfusion and only short-lived effects on renal function. These findings challenge the physiological rationale for fluid bolus resuscitation in sepsis.
We conducted a randomised crossover controlled animal experiment to investigate the effect of a bolus infusion > 20 mL/kg (a commonly administered amount in humans and equivalent to 1000 mL of NS and 300 mL of HTS in 40 kg sheep) on vital organ blood flow and renal function in the setting of gram-negative sepsis induced by intravenous infusion of live *Escherichia coli*.

Methods

Experimental procedures were approved by the Animal Experimental Ethics Committee of the Howard Florey Institute in accordance with the *Prevention of Cruelty to Animals Act 1986* (Vic), under the guidelines of the National Health and Medical Research Council *Australian code of practice for the care and use of animals for scientific purposes*, which conforms with the United States National Institutes of Health *Guide for the care and use of laboratory animals*.

Merino ewes weighing between 35 and 45 kg were procured for chronic instrumentation. The animals underwent three separate operations for the placement of chronically indwelling flow probes.

The first procedure included oophorectomy and carotid loop creation. Two to 3 weeks later, we placed transit time-flow probes (Transonic Systems, Ithaca, NY, USA) around the circumflex coronary artery (3 mm) and the ascending aorta (20 mm). About 2 weeks after this, we...
placed two transit-time flow probes (6 mm and 4 mm, respectively) around the superior mesenteric artery and left renal artery. The animals were allowed to recover for 3 weeks. The accuracy of chronically implanted transit-time flow probes for the measurement of regional blood vessels has been validated previously.26,27 We connected the transit-time flow probes to a T201 CDS flowmeter (Transonic Systems) via a TM04 four-channel sequential scanner (Transonic Systems).

The day before experimentation, we implanted a carotid loop arterial Tygon catheter (inner diameter, 1.0 mm; outer diameter, 1.7 mm [Cole-Parmer, Melbourne, Vic, Australia]) and two internal jugular venous polythene catheters (inner diameter, 1.2 mm; outer diameter, 1.7 mm [Cole-Parmer]) for the measurement of mean arterial pressure (MAP), central venous pressure (CVP) and for fluid infusion, respectively.

We tied TDXIII pressure transducers (Cobe Cardiovascular, Lakewood, Colo, USA) for the measurement of MAP and CVP to the back of the sheep and calibrated them against a mercury and a water manometer, respectively. We used the second venous catheter as an infusion line. We inserted a urinary catheter for urine flow measurement and sample analysis.

The day before experimentation, we implanted a carotid loop arterial Tygon catheter (inner diameter, 1.0 mm; outer diameter, 1.7 mm [Cole-Parmer, Melbourne, Vic, Australia]) and two internal jugular venous polythene catheters (inner diameter, 1.2 mm; outer diameter, 1.7 mm [Cole-Parmer]) for the measurement of mean arterial pressure (MAP), central venous pressure (CVP) and for fluid infusion, respectively.

We tied TDXIII pressure transducers (Cobe Cardiovascular, Lakewood, Colo, USA) for the measurement of MAP and CVP to the back of the sheep and calibrated them against a mercury and a water manometer, respectively. We used the second venous catheter as an infusion line. We inserted a urinary catheter for urine flow measurement and sample analysis.

We collected analogue signals (MAP, CVP, cardiac output [CO], change in regional blood flows) using a personal computer data acquisition system with custom software written at the Howard Florey Institute. We collected data at 100 Hz for 10 seconds at 1-minute intervals throughout the experiment protocol.

Induction of sepsis

On the day of the study, food and fluid were removed 3–4 hours before the experiment and baseline measurements were performed over 30 minutes before the induction of
sepsis. Then, a bolus of 3×10^9 colony-forming units (CFU) live *E. coli* was injected intravenously over 5 minutes. This bolus was followed by 1-minutely sampling of all the systemic haemodynamic parameters and vital organ blood flows.

About 6–8 hours after the initial bolus, the animal typically reached predefined criteria for randomisation. These criteria had to be simultaneously fulfilled for the experiment to be conducted: > 10% decrease of MAP and > 50% increase of heart rate (HR) compared with pre-*E. coli* values. The aim of waiting for this period and for these physiological changes to occur was to simulate the clinical situation, where any intervention would be delayed and take place in response to clinical changes.

Experimental protocol

Before randomisation, all animals were monitored for 30 minutes (control period) and then randomised to: (1) control group; (2) NS group; or (3) HTS group. Accordingly, each animal received one of the following: observation (control), a bolus of NS (1 L over 15 min) or a bolus of 3% saline (300 mL over 15 min). Monitoring was continued for 3 hours after the start of the infusion. At the end of the experiment, all catheters were removed and the animals were allowed to recover for 10–14 days before being crossed over to the other arm of the study.

Blood samples were collected at – 45, – 30, 0, 15, 30, 60, 90, 120, 150 and 180 minutes. Urine samples were collected every 30 minutes throughout the experiment.
Oxygen delivery (Do2) was calculated using the following equations:

Arterial O2 content = 1.34 × haemoglobin (g/L) × SaO2 + 0.0031 × PaO2

Do2 (mL O2/min) = arterial O2 content × CO (L/min)

Organ Do2 = arterial O2 content × organ blood flow (L/min)

Statistical analysis

We used repeated measures analysis of variance (ANOVA) to compare the three groups. Statistical analysis was performed using SAS, version 9.1 (SAS Institute Inc, Cary, NC, USA). Variables were initially assessed for normality and log-transformed where appropriate. Group comparisons over time were determined using generalised linear modelling (PROC MIXED), with each sheep treated as a random effect. Whether groups behaved differently over time was determined using an interaction between group and time.

Data are presented as mean (SD), and P ≤ 0.05 considered statistically significant.

Results

Effects of sepsis

Intravenous injection of 3 × 10⁹ CFU of live E. coli induced a severe septic state. The animals became ill, sat quietly in the cage and were tachypnoeic (respiratory rate, > 50 breaths/min), febrile (temperature > 42.0°C) and tachycardic (HR, > 140 beats/min). Their HR increased by > 50%, their MAP decreased by 10%–30%, and their stroke volume (SV) decreased by 25%–50% (P < 0.05) (Figure 1). The CO was sustained by means of marked tachycardia. All animals developed oliguria and decreased creatinine clearance (organ failure).

Systemic haemodynamics

Immediately after bolus infusion, compared with control, both NS (about 25 mL/kg) and HTS (about 8 mL/kg) caused similar and significant increases in MAP, CO, SV and total peripheral conductance (P < 0.05; Figure 1 and Figure 2). These effects, however, were short-lived and had essentially dissipated after 60 minutes, with no difference from controls for the rest of the observation period (P > 0.05; Figure 1 and Figure 2).

HTS transiently increased HR (15 beats/min; P < 0.05; Figure 1), while NS did not. HTS caused a greater increase in CO than NS, with a difference of about 0.5 L/min lasting about 60 minutes (P > 0.05; Figure 1). CVP increased significantly (but transiently) only in the NS group (P < 0.05; Figure 2).

Regional haemodynamics

Compared with controls, both NS and HTS significantly but transiently increased mesenteric blood flow, mesenteric conductance, coronary blood flow and coronary conductance immediately after infusion (P < 0.05; Figure 3 and Figure 4).

HTS had greater but somewhat earlier and shorter effects on mesenteric blood flow and mesenteric conductance than NS (P < 0.05; Figure 3). A similar pattern applied to coronary blood flow and coronary conductance.

HTS and NS did not significantly change renal blood flow or renal conductance compared with controls (P > 0.05; Figure 5).
Renal function
Urine output significantly increased with NS infusion ($P<0.05$), but only mildly and not significantly with HTS ($P>0.05$; Figure 6). Only the NS group significantly but transiently increased creatinine clearance at 30 and 60 minutes ($P<0.05$; Figure 6). There were no differences in creatinine clearance between the HTS and control groups ($P>0.05$; Figure 6).

Less than 20% of the administered fluid was eliminated in the urine 180 minutes after administration.

Oxygen delivery
For the first 15 minutes after infusion, HTS, but not NS, significantly increased systemic D_O_2 and mesenteric D_O_2 ($P<0.05$; Figure 7). Neither solution affected coronary D_O_2 ($P>0.05$; Figure 7). However, while HTS did not alter renal D_O_2 at any time ($P>0.05$; Figure 7), renal D_O_2 was significantly lower than controls for the first 15 minutes after infusion in the NS group ($P<0.05$; Figure 7).

Osmolality
Plasma osmolality and plasma sodium level increased significantly in the HTS group for the first hour ($P<0.05$; Figure 8). Similarly, the urine sodium level increased in the HTS group for the first 2 hours after infusion ($P<0.05$; Figure 8). NS significantly decreased urine osmolality 60 and 90 minutes after infusion ($P<0.05$; Figure 8), while HTS did not have measurable effects.
Discussion
In this randomised controlled crossover large animal study, we found that bolus resuscitation with HTS and NS achieved broadly similar transient effects on systemic and regional haemodynamics. These findings dissipated within about an hour of administration, such that the systemic and regional circulations were indistinguishable from control animals thereafter. Additionally, NS caused a significant but transient decrease in renal DO\textsubscript{2}. Finally, less than 20% of the administered fluid was excreted in the urine during the 180 minutes of the study.

Our findings are consistent with previous observations on the effects of NS on regional blood flows and function.28,29 They indicate that, in gram-negative sepsis, bolus resuscitation with NS only induces a short-lived increase in CVP and CO, and that these changes have modest and transient effects on regional circulations and no effect on renal perfusion.

Previous studies of HTS in sepsis have often combined HTS with a colloid (e.g., dextran) solution, making it difficult to understand the specific effects of HTS. Even in such models, measurement of the regional flow effects of HTS has been uncommon. In a model of porcine sepsis using microspheres, Kreimeier and colleagues found that HTS increased CO, but not CVP or MAP, and did not affect regional blood flow.30 In a similar canine model, Rahal and colleagues administered HTS followed by NS to maintain a mixed venous oxygen saturation greater than 70% and reported a partial, transient increase in CO with HTS, which was accompanied by a similar effect on portal blood...
flow. In a sepsis model in rats, Batista and colleagues combined HTS with 6% hydroxyethyl starch and found a significant increase in MAP. This increase was associated with increase vasopressin levels and was blocked by a V1 receptor antagonist, suggesting vasopressin release triggered by increased plasma tonicity, an effect confirmed in another study. However, they did not assess regional flows or renal function. In another canine model of sepsis, HTS transiently improved mesenteric blood flow and decreased mesenteric oxygen extraction. Finally, Hanneeman and colleagues measured the systemic haemodynamic effects of HTS in 21 patients with hyperdynamic sepsis. They found that HTS increased CO and filling pressures, and that this effect had dissipated by 60 minutes after infusion. These effects in septic humans are essentially identical to those we report in septic animals. They are also similar to those seen in normal animals, with the major difference being that the effect of HTS on systemic haemodynamics and regional flows took longer to dissipate in normal sheep. Importantly, in both septic and normal experimental animals, renal blood flow was not affected by HTS or NS.

Our findings provide experimental evidence in support of the notion that, in mammalian gram-negative sepsis, fluid bolus resuscitation with crystalloids (NS or HTS) has only transient, modest effects on systemic and regional circulations, and no discernible effect on renal circulation. The similarly transient effect on urine output and creatinine clearance likely reflects the effect of salt loading on diuresis and of haemodilution on oncotic pressure. These findings can be explained by the increased tonicity-mediated release of vasopressin induced by HTS and by the effect of hypernatraemia on natriuresis. Our findings are in accordance with evidence and argument that challenge the view that renal protection can be achieved by intravenous fluid loading. Finally, these experimental findings are in accordance with recent clinical findings also questioning the role of fluid bolus-based resuscitation in sepsis.

Our study has several strengths. First, to our knowledge, this is the first study to compare the systemic and regional haemodynamic effects of HTS and NS is fluid bolus resuscitation in sepsis. Second, in our hands, this septic model has a mortality rate of about 20%–30%, which is similar to the mortality rate in human septic shock. Third, unlike methodologies that use microspheres, we were able to measure flows over time and provide an integrated picture of regional perfusion. Fourth, we are the first to provide data on renal blood flow and renal conductance in association with such resuscitation.

Our study also has limitations. Unfortunately, although we estimated systemic and regional Do$_2$, we did not estimate oxygen extraction. This makes it difficult to assess the consequences of changes in Do$_2$. However, we wished to study conscious animals to avoid the confounding effects of anaesthesia on systemic and regional flows. We have found that this approach makes it technically extraordinarily difficult to maintain cannulation of regional veins, and promotes thrombosis. We could not provide information on gut function. However, in a ruminant animal such as the sheep, such information is of uncertain relevance to humans.

Conclusions
Bolus resuscitation with HTS and NS achieved only modest and transient effects on systemic and regional haemodynamics. These effects dissipated within an hour in association with a haemodilutional decrease in Do$_2$. Additionally, more than 80% of the administered fluid was retained 3 hours after administration. These findings challenge the physiological rationale for fluid bolus resuscitation in sepsis.

Acknowledgements
This study was supported by a grant from the Austin Hospital Intensive Care Trust Fund.

Competing interests
None declared.

Author details
Li Wan, Research Fellow
Rinaldo Bellomo, Director of Research
Clive N May, Principal Research Fellow, Neurocardiovascular Research Group
1 Department of Intensive Care, Austin Health, Melbourne, VIC, Australia.
2 Howard Florey Institute, University of Melbourne, Melbourne, VIC, Australia.
3 Department of Pharmacology, University of Melbourne, Melbourne, VIC, Australia.
Correspondence: rinaldo.bellomo@austin.org.au

References
Information for authors

Critical Care and Resuscitation is the official journal of the College of Intensive Care Medicine of Australia and New Zealand. It is a research and educational journal for those interested in critical care and intensive care medicine and related subjects.

Instructions for authors are available at http://www.cicm.org.au/journal.php

Address manuscripts and communications to:
Professor Rinaldo Bellomo
Chief Editor
Critical Care & Resuscitation
Department of Intensive Care, Austin Hospital, Studley Road, Heidelberg, VIC 3084, Australia
Tel: 61-3-9496 5992; Fax: 61-3-9496 3932
E-mail: rinaldo.bellomo@austin.org.au