Remember the Side Effects of Haloperidol: A Case Report

G. F. ALVAREZ, G. A. SKOWRONSKI
Department of Intensive Care, The St George Hospital, Kogarah, NEW SOUTH WALES

ABSTRACT
An eighteen-year-old man who had a laminectomy and subtotal excision of a lipomyelomeningocele, received a single dose of haloperidol for post-operative pain and agitation. The patient suffered an acute dystonic reaction and was extensively investigated before the correct diagnosis and treatment was instituted. This case illustrates the ease with which extrapyramidal side effects following treatment with haloperidol may be overlooked in complicated medical or surgical cases. (Critical Care and Resuscitation 2003; 5: 266-269)

Key words: Haloperidol, benztropine, antipsychotic, neuroleptic drug, adverse drug effect, extrapyramidal syndrome

Haloperidol is a psychotropic drug of the butyrophenone family and is used for both chronic and short-term therapy. Long-term therapy is commonly used for psychotic disorders such as schizophrenia, senile psychosis or the manic phase of bipolar disorders.

Physicians not dealing with psychiatric patients are more familiar with the short-term indications in acutely confused states including the relief of delusions, delirium and aggressive behavior. Although haloperidol appears to function by blocking dopaminergic neurotransmission in the central nervous system, the precise mechanism for its therapeutic effects remains unknown. Antipsychotic drugs also have the potential to cause the extrapyramidal syndrome (EPS), which includes a group of movement disorders of dystonia, akathisia, tardive dyskinesia and parkinsonism.

Antipsychotic drug-induced EPS is thought to be caused by the blockade of central dopamine D2 receptors. Serious complications include neuroleptic malignant syndrome and torsades de pointes and demand the clinician pay close attention to patients receiving haloperidol.

The following case report illustrates a common adverse drug effect to haloperidol that was not recognised early, causing unnecessary investigations and treatment.

CASE REPORT
An eighteen-year male with an unremarkable past medical history presented with a 2-month history of disabling back and leg pain. Initially, his pain was controlled with gabapentin, dexamethasone and oral analgesics. However, his pain became unresponsive and magnetic resonance imaging (MRI) of his spine revealed an intradural lipoma extending from the lumbar vertebra (L2, L3) to the sacral vertebra (L5, S1) which measured 8 cm in length and 3.5 cm in diameter. There was encasement of the nerve roots of the cauda equina, with the conus adherent to the superior border of the lipoma. The MRI of the cervicothoracic spine and a computed tomography (CT) scan of the head were within normal limits.

An L2-L4 laminectomy and subtotal excision of the lipomyelomeningocele were performed to untether the spinal cord. While the patient did not sustain any additional neurologic deficits, because of the extensive dissection of his cauda equina he developed post-operative radicular leg pain which was treated with analgesia, gabapentin and decreasing doses of dexamethasone. Postoperatively he remained afebrile with no haemodynamic or respiratory compromise.

On the third post-operative day, the patient began complaining of escalating episodes of right shoulder
and neck pain causing involuntary neck flexion on the right side. He was orientated, cooperative and responded appropriately to command. Sensory, motor, cerebellar and cranial nerve examinations were within normal limits. The patient was described as having “neck muscle spasms and persistent upward gaze.” A diagnosis of atypical convulsions was made and he was admitted to the intensive care unit. A CT of his head and a lumbar puncture were performed, both of which revealed no abnormalities. However, on review of his medical chart, it was noted that twenty-four hours previously, the patient had received an extra dose of 8 mg of dexamethasone and 5 mg of haloperidol (intra-muscularly) for radicular leg pain. He was given 2 mg of benztropine intravenously with complete resolution of his symptoms.

DISCUSSION

Haloperidol is widely used, in part because of the lack of cardiovascular side effects. There is a common perception that it controls agitation with virtually no adverse respiratory, cardiac, renal or haematopoietic effects. However, numerous reports illustrate that serious side effects can occur in all of these systems, and dystonia of the laryngopharyngeal muscles can cause throat tightness and dysphagia prompting inappropriate and hazardous medical interventions.

Hennessy and coworkers performed a cohort study of psychiatric outpatients to determine the rates of cardiac arrest and ventricular arrhythmia in patients using antipsychotic drugs. Compared with the control groups, patients taking antipsychotic drugs (mostly haloperidol) had a rate ratio of cardiac arrest or ventricular arrhythmia ranging from 1.7 to 3.2 and rate ratio for death ranging from 2.6 to 5.8. While the literature is replete with reports of the potential cardiovascular consequences of haloperidol (neuroleptic-naïve patients only, many patients on concurrent medications known to cause EPS (e.g. selective serotonin reuptake inhibitors, tricyclic antidepressants). Ramaekers et al., recruited twenty-one volunteers aged 18 to 35 years without any significant past medical or psychiatric history. They conducted tests of psychomotor, cognitive and extrapyramidal functions one hour before and 3 and 6 hours after haloperidol on days 1 and 5. Two subjects refused the study, one because of akathisia after a 2 mg dose, the other subject suffered an acute dystonic reaction on day two. Approximately 65% of the volunteers experienced EPS requiring
anticholinergic medication during the first five days. Haloperidol also significantly interfered with the subjects’ concentration causing increased somnolence and both mental and motor akathisia.

As the elimination half-life of haloperidol is 17 to 18 hours it may exert prolonged effects. Anderson et al described a patient with akathisia 5 days after and dysphoria 6 weeks after receiving a single haloperidol dose of 5 mg. Alternatively, patients can experience a nearly immediate adverse drug effect. Patients who have experienced drug-induced EPS are more likely to have future episodes if antipsychotic medications are re-introduced. However, compared with oral haloperidol intravenous haloperidol may be associated with an EPS that is less severe.

Haloperidol is easy to use and effective in controlling acute delirium and combative states. However, it has important adverse side effects that may be misinterpreted especially in complex medical or surgical patients. Our report illustrates the ease with which inappropriate investigations and management occurs because a common adverse drug event was not recognised. One ampoule of benztpine costs $2.40 (AUD). This patient’s intensive care unit stay, medical fees, investigations (e.g. CT head, lumbar puncture, cerebrospinal fluid analysis), antibiotic course and one extra day in hospital, cost an extra $2715.00 (AUD). This patient’s intensive care unit stay, medical fees, investigations (e.g. CT head, lumbar puncture, cerebrospinal fluid analysis), antibiotic course and one extra day in hospital, cost an extra $2715.00 (AUD). We should mention the added distress the patient and family experienced.

Received 14 July 03
Accepted 22 August 03

REFERENCES
27. Riker RR, Fraser GL, Richen P. Movement disorders associated with withdrawal from high-dose intravenous